
Int. J. Heat Mass Transfer. Vol. I, pp. 121-138. Pergamon Press 1960. Printed in Great Britain. 

A MECHANISM OF TURBULENT HEAT TRANSFER 

LIQUID METALS 

N. Z. AT.~.Rt and B. T. CHAO,~ 
tUniversity of Alexandria, UAR (Egypt) and **University of Illinois, Urbana, Ill. 

(Received April 1959; revised 15 February 1960) 

IN 

Almeact--A simplified mechanism of turbulent heat tmmfer, based on a modification of Prandtrs 
mixing-length hypothesis, has been proposed. It is assumed that t ime is a continuous change ofmomen- 
turn and energy during the flight of the eddy. Two expressions giving the ratio of eddy diffuse'ties for 
heat and momentum were obtained for fully developed pipe flow. One is for fluids of Prandtl number 
ranging from 0-6 to 15 and the other for liquid metals. Both correctly predict the influence of Reynolds 
number, Prandtl number and radial location across the pipe on the diffnsivity ratio when compared to 
trends revealed by limited published data. 

Computation of Nusselt number and temperature profile in liquid metals were carried out under 
conditions of constant wall flux using the deduced expression for diffusivity ratio. They agree well with 
experimental results. For practical calculation of film coefficient of heat transfer, the following inter- 
polation formula may be used: 

N~e ---- 7 -F 0-05 Npr e'u Npe 0"77 

which fits the ~dculated data with a maximum deviation of less than 12 per cent for N~r < 0.1 and 
N~  < 15,000. Limiting values of Nusselt number as NPr--~ 0 and Nae --, 0v were discussed. 

R / m m ~ - U n  mb:anisrne $implifi6 de la transmission de chaleur turbulente, fond~ sur une modifkation 
de l'hypoth&le de Prandtl sur la longueur de m~lange, est propose. On suppose qu'il y a une variation 
continue de ia quantit~ de mouvement et d',L, nergie pendant la trajectoire de ia masse tourbillonnalre. 
Denx expressions donnat le rapport des ditfusivit~s turbulentes pour la chaleur et la quantit~ de 
mouvement ont ~ obtenues dans le eas d'un b:oulement pleinement ~qabli dam une conduite. L'une 
est valabie pour les fluides dont le nombre de Prandtl varie de 0,6 ~ 15 et l'autre convient pour ks 
m~taux liquides. Ces deux expressions permettent de pr~voir correctement l'influence du hombre de 
Reynolds, du hombre de Prandtl et de la distance/t l'axe de la conduite sur le rapport des diffusivit~, 
comparativement aux tendances i n d i q ~  par ies quelques r~sultats publiC. 

Le calcul du nombre de Nusselt et du profil des temp4~'atures dans ks m~mx liquides a ~ effectu~, 
darts ies conditions de flux de pami constant, en se servant de l'expressinn obtenue pour ie rapport 
des diffusivit~s. Ce ealcul est en bon accord avec ies r~sultats exp~mentaux. Pour le ¢~cul pratique 
d'un coefficient de transmission de chaleur surfacique, on peut utiliser la formule d'interpolation 
suivante 

NNu ffi= 7 .-~ 0,05 Npr 0,1l$ N'pe 07'? 

qui donne les r~ultats calcul~ avec tm b:art maximum inf~rieur k 12~ pour 0,1 < Npe < 15.000. 
Les valeurs limites du nombre de Nusselt quand Npr -+" 0 et Nre "-~ ~o sont discutd~. 

Zu~mmenfasst~--For die turbulente Warmetibertragung wird ein vereinfachter Mw.haniwnus 
vorlje~hlasen, der auf einer Abwandlung der Hypothese der Mischungflitnge nach Prandtl beruht. 
Es wird a n B e n ~ ,  dass sich w',lhrend der Bewegung eines Ballens Impuls und Energie kontinuierlich 
iindern. Fflr voll entwickelte RohrstrOmung erhalt man zwei A ~  for das Vm'hlltn~ der 
turbulenten Leitf~"tigkeiten for Wirme und Impuh, eimm ffir den Berek:h tier Prandtlzahl yon 0,6 bis 
15 und den anderen for fltissip Metalle. Beide geben den Einfluss der Reynold~nhl, der Prandtlzahl 
und der radialen Koordinate im Rohr auf das Verhllltnis der Wfirmeleitffihigkeiten richtig wieder, 
wenn man sic mit Literaturwerten vergieicht. 
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Nusseltzahlen und Temperaturprofile fiir fliissige Metalle warden unter der Bedingung konstanter 
WLrmestromdichte an der Wand berechnet, wobei der abgeleitete Ausdruck for das Verh~iltnis der 
Leitf'ghiskeiten verwendet wurde. Die Ergebnisse stimmen gut mit Messungen iiberein. Fiir die 
praktische Bc.rechnung kann loigende Gleichung verwendet werden. 

N ~  = 7 + 0,05 Npr°, ~ Npe 0''/7 

Diese Gleichun8 gibt die errechneten Werte mit einer Gr6ssenabweichung yon weniger als 12~0 
N~r < 0,1 und Nve < 15000. Auch die Grenzwerte der Nusseltzahl fiir Npr--~0 und Nae--->~o 

werden diskutiert. 

Alztract--Hpe~aaraerca ynpotueua~t MexaHMaM Typ6y~eaTHOrO Temloo6~leHa, OCHOBaHH~t 
Ha B~OI4aMeH~HHOIt rHnoTeae IIpas~ra~ o ~,~HHe eMemenn~. ~onyc~aere~, ~ o  HDOHCXO~HT 
Henpepbmnoe ~laMeHeHHe RO~HqeCTBa ~BHH~eHHH H aHeprRH aa Bpe.~t~ ~BHH~eHH~[ Bnxp~. 
~ I ~  CTa6HJIHaHpoBaHHOrO nOTOKa S Tpy6e no~yqeH~ ~Ba COOTHOmeHRF[ Me~y  ~ O ~ H -  
I~HeHTOM ~ H ~ y a H H  BHXpR IlpH nepeHoce TeRra H I~O~'IHqeCTBOM ~BH~KeHHR. 06a supameH~ 
IfpaBH~IbnO OTo6paz~amr B~IHffHHe ~p~rrepHee PeitHOnb~ea, 1-IpaH~T~IR It pa~Ha.~bHO~ KoopKn- 
HaTM, qTO H no~rsepm~aeTcn cpaBHeHHeM C HMelOI~HMHCR ofly6~HKoaaHHbI~ln J~HH~JMH. 

B~ncneHHe Kparepa~ Hyccenbxa H Te~nepaTypuoro npo~pm~R e ~ K u x  ~e~an~ax 
HpOBOJIJ~JIOCb B yc~oaHax nOCTORHHOPO noToKa Tel~la Ha CTeHKe C HCnOiIb3OBallHeM COOTHO- 
menHf[ l~o~lIKelt~oa ~ j~ya~m eaxp~. ~ri~ ~aH~l~e xopomo coraaeyiorea e peayab~aTa~a 
at~cnepa~enTa. ~ npatrraqec~oro pactl~ra Koa~nuneHTa rem~oo6,~ena MO~HO ncno~b3o- 
Barb cne~ymmy~o anTepnoammonnys) ~popzy~y 

N~u = 7 ~ 0,05 Npr ° ' ~  Npe ° ' ~  

KoTopaR a a ~  Menbme OTKnOneHn~[ ~eM t2% ann Npe < 0,1 n Np~ < 15 000. PaceMorpen~ 
npe~enbH~e aBaqesan ~pnTepnn Hycce~bTa HpH Npr ~ 0 n Nae ~ ~o. 

NOMENCLATURE 

a, radius of  the eddy (ft); 
A, area per unit length of pipe (fts/ft); 
c~, specific heat at constant pressure 

(B.t.u./lb °F); t  
D, pipe inside diameter, 2r,o (It); 
g~, mass unit conversion constant 

(lb f t /Lb hr 8); t 
h, surface conductance (B.t.u./hr ft ~ °F); 
k, thermal conductivity of  fluid 

(B.t.u./hr ft °F); 
1, mixing length (It); 
q, rate of  radial heat flow at any radius r 

per unit length of  pipe (B.t.u./hr It); f ,  
r, radius (It); NNu, 
r~, inside radius of  pipe (ft); Nee, 
t, fluid temperature (°F); Nvt, 
u, axial velocity (ft/hr); Nae, 
ub, mean velocity in pipe (ft/hr); Nst, 
v', fluctuating velocity in radial direction NPe', 

(ft/hr); U 
v*, friction velocity defined by u+ 

v* = ~/(g~T,~/p) (ft/hr); y+, 
y, radial distance f rom pipe wall fit); 
• H, eddy diffusivity for heat transfer (fP/hr); Z 

t Lb represents pounds force, and 4b pounds mass in 
this paper. 

~M, eddy diffusivity for momentum transfer 
(ft~/hr); 

,c, thermal diffusivity of  fluid, = k / c , p  
(ft ' /hr);  

~, dynamic viscosity of  fluid (lb/ft hr); 
v, kinematic viscosity of  fluid (ft~/hr); 
p, density of  fluid (lb/ft a); 
~-. shear stress at any radius r (Lb/ft2); 
8, time (hr). 

Dimensionless quantities 
b, empirical constant in equations (17) and 

(2o); 
Darcy friction factor; 
Nusselt number, h D / k ;  
Peclet number, Nae Nrr  = ubD/,c; 
Prandtl number, c ~ / k  = v/K; 
Reynolds number, UbD/V.; 
Stanton number, N~u/NaeN~=h/c~ ,pub;  
NRe', Nat' refer to eddy; 
= U/Ub ; 
= U/V* ; 
friction distance parameter defined by 
y+ = v 'y /v:  
= r/r w ; 
= en/~M, ratio of  eddy diffusivity of  
heat to momentum;  
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Subscripts ~'gc = (v + f.M) du 
17, bulk; P ~ (1) 
c, center of pipe: 
e, eddy; q dt 
w, wall. Ac, p = -- (K + ~ x ) ~  (2) 
Other symbols or subscripts that might be 

used are defined in the text. Equations (1) and (2) are deduced from the time 
averaged Reynolds momentum and energy 
equation for axially symmetric incompressible 
flow in a pipe, using the following assumptions: 

1. INTRODUCTION 

THe: advantage of using liquid metals as heat- 
transfer media is primarily due to their high 
conductivity, relatively low viscosity and high 
boiling point. Among the disadvantages, one 
may mention the difficulty of handling. Some 
liquid metals are corrosive and chemically 
reactive. Techniques are being developed to 
overcome these difficulties. 

After the World War II, a widespread interest 
has appeared in using liquid metals as a coolant 
in nuclear-chain reactors. In spite of the many 
attractions and the potentialities of its use in 
industrial applications, the mechanism of turbu- 
lent heat transfer, even under the simple condi- 
tion of fully developed pipe flow, is not well 
understood. Lubarsky and Kaufman [1] made a 
thorough examination and re-evaluation of 
the experimental results on film coefficient of 
heat transfer reported by numerous investigators 
up to 1953. They observed that the bulk of data 
for Nusselt number were lower than those pre- 
dicted by the then existing theoretical analyses. 
After reviewing the available literature on the 
subject, and performing some preliminary 
analysis, the writers were led to believe that a 
major reason for the observed discrepancy 
could be due to the oversimplified relation 
commonly assumed for eddy diffusivities of heat 
and momentum. An improved macroscopic 
theory of turbulent exchange mechanism is 
herein proposed which brings closer the theoreti- 
cal predictions and measured data, both for heat- 
transfer coefficients and temperature profiles. 

The governing equations for the analysis of 
turbulent heat transfer in circular tubes, at a 
large distance from the entrance, where both the 
velocity and temperature profiles are fully 
developed,'r may be expressed as: 

(a) The flow is steady on the average. 
• (b) All properties are constants. 
(c) Axial conduction is negligible when com- 

pared to axial convection. 
(d) Frictional heating is negligible. 

The analogous nature of momentum transfer 
and heat transfer is evident from the foregoing 
pair of equations. They are linked to each other 
through the relationship between the two eddy 
diffusivities. Such a relation depends on the 
physical model which one selects. 

Reynolds [4], who made the first important 
step in the analysis of turbulent exchange 
mechanism, postulated that energy and momen- 
tum were transferred in the same manner. 
Reynolds analogy, as the postulate is commonly 
known, implies eu----~M. Taylor [5], Prandtl 
[6], yon K~rm~n [7], Martinelli [8, 9], Lyon [10] 
and others [2, 11, 12] all adopted this assumption 
in their analysis of turbulent heat transfer. 
Relatively recently, various experiments have 
been conducted to determine the diffusivity 
ratio e from measured temperature and velocity 
profiles in fluids flowing turbulently in circular 
tubes as well as between parallel plates [13-21]. 
It has been established that a is not a constant 
and, with even more certainty, eH cannot in 
general be equal to eu. In spite of the dis- 
crepancies which exist among the published 
data, it appears that the following has generally 
been agreed on: 

(a) The diffusivity ratio, a, is not a constant 
across the tube. 

(b) For air, a is greater than unity. It exhibits 
higher values in regions close to the wall and has 

I" Scban and Shimazaki's definition of fully developed +. Schneider [3] has demonstrated that this is a good 
temperature profile is implied, see [2]. assumption provided tha t Nre > 100. 
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a decreasing trend toward the pipe center. For 
flow at high subsonic Mach numbers, an 
opposite trend has been reported [21]. The 
latter may be attributed to compressibility. 
Increasing Nx~ tends to reduce a but in no case 
is it less than unity. 

(c) For liquid metals, a is less than unity. The 
variation of a with a greater distance from the 
wall shows a trend opposite to that described in 
(b) above. At a fixed Nae, a increases first 
relatively rapidly and then more slowly as one 
moves away from the wall. Increasing N ~  tends 
to increase a but in no case it is greater than 
unity. 

Jenkins [22], Deissler [23] and recently Lykoudis 
and Touloukian [24] attempted to evaluate a on a 
theoretical basis by modifying Prandtl's mixing- 
length theory. All the models proposed failed 
to predict the behavior of a as summarized 
above. 

2. SUGGESTED MODEL FOR THE MECHANISM 

OF TURBIJLENT EXCHANGE--MODIFIED 
MIXING-LENGTH THRORY 

In 1925, Prandtl [25] proposed the now famous 
mixing-length hypothesis. It was presumed that 
the eddy preserved both its momentum and 
energy while travelling between layers of a fluid 
before mixing occurs. Referring to Fig. l(a), an 
eddy originated at layer (I) and moving upwards 
preserved its velocity ux and temperature q 
over an average distance I called the rrdxing- 
length till it reached layer (2) where it mixes with 
the bulk of  fluid there and completely loses its 
identity. An eddy created at layer (2) and 
moving downwards behaves in a similar way as 
illustrated in Fig. l(b). Conceivably, neither the 
momentum (in the u-direction) nor the energy 
may be conserved during its travel. In fluids of 
high thermal conductivity, heat transfer at the 
surface of the eddy may become appreciable. 
Thus in Fig. 2(a), an eddy created at layer (I), 
with velocity ux and temperature q will attain a 
velocity u~ and temperature t~ before mixing 
takes place at layer (2). A similar event takes 
place for an eddy moving towards the wall as 
illustrated in Fig. 2(b). With this simple modifi- 

--- [dOy just ~efore 
OiSInte~robon "\ 

(5, 

"[ddy ot creotlon ~ " " " " " \ \ ' "  

Teml:c, ro tu~  Velocity 
prO file ( o ) pro file 

/-~--'E0dy ot e r ~ t ~ n .  

Q t2 t 

dl~nlE~rOhOn 

(b) 
FIG. 1. Prandtl's model of turbulent mixing: (a) eddy 

moving upward; (b) eddy moving downward. 

cation of Prandtl's mixing-length hypothesis, 
one has: 

ell (h - t ~ ) / ( h -  q )  

• u (us  - u l ) / ( u , -  uO 

1 + ( u  1 - u O / ( u t  - u O  

1 + (t~ - -  ta)/(t~ - -  t~) 

for an eddy moving upward Oat)  

and 

e l l  (t~, - -  h ) / ( t ,  - -  tO 

• ta (u~ - u l ) / ( u ,  - u O  

1 + (u2 - -  u~)/(u~ - -  uz) 

1 + (t2 - -  t~) / ( t~ - -  q )  

for an eddy moving downward (3b)t 

In order to maintain continuity, one would 
logically assume that there wiU be just as many 
eddies moving upward as there are moving 
downward. (Equations (3a) and (3b) are, in 
effect, identical.) 

t See (33) for derivation. 
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In the foregoing equations, ( u ~ -  u~) and 
( t = -  t~)are conceived, respectively, as the 
flunctuating axial component of velocity and 
temperature at layer (2). The corresponding 
fluctuating quantities at layer (1) are (u= -- u,) 
and (t~ - t~). 

---Edciy ius~* ~fore 
d~l~n te~Q1ign 

q; :," , U'f • U I 

"'EOOy ot ¢reat~n 
~e'n~eroture Velocity 

;,rC rite ( o ) profile 

-£aay i~t b e l l  
~lin~lol lON 

(b) 

Fi~ 2. Modified Prandd's model of turbulent mix- 
ing: (a) eddy moving upward; (b) eddy moving 

downward. 

To ascertain the influence of fluid drag and 
heat transfer at the surface of the eddy, it is 
assumed that they are both associated with its 
boundary layer. For simplicity, the eddy is 
presumed to be spherical. As it moves from 
layer (1) to layer (2), its average axial velocity is 
½(u] + u~) while that of the surrounding fluid 
is ~(u~ + u~). Application of the momentum 
principle yields, 

P ( = '  - = ; ~ ' s  t = p v ( H  - ~,) (4) 

S being the surface area of the eddy, V its 
volume, I/v, the time required for an eddy to 
travel between layers (I) and (2) and A the 
average friction coefficient defined by: 

"reg e 
½p[~u, + u,) - ½(u, + u~)]' 

~'ege 
½p[½(u,-  u;)]* 

For spherical eddy of radius a, V /S  = a/3. 
Equation (4), upon rearrangement, becomes 

u~--  uz 3 ~ ( ~ )  u=-- u~ (5) 
u= - -  t~ 2 4v' 

To estimate the amount of heat transfer 
during flight, the spherical eddy is conceived to 
have an average temperature T, [=½(tt + t~)] 
being immersed in an immense fluid initially at a 
uniform temperature To [-----i(tx + t=)]. The film 
coefficient of heat transfer at the eddy surface 
is h,. We shall now proceed to evaluate the heat 
transferred from the surrounding fluid to the 
eddy during the flight time l/ft. With this sim- 
plified model,t the differential equation of the 
temperature field in the surrounding fluid and 
its initial and boundary conditions are as follows: 

( Te = ,~ TR~ + ~ , a < R < o: 

T(0, R) = To; TR(O, o) 

= - - h ' [ T ,  - -  T(O, a)], h' = h, 
k 

The solution of equation (6) is 

T - - T o  a oh' ( 
T _ To = R l + ah, ~l 

R - - a  

R i a  
.o c 

where 
H l + a h '  

a 

(7) 

(7a) 

t An alternative model would be to asinine that the 
surrounding fluid is at a constant, unifecm tempz~ture 
To and to calculate the total heat transferred during the 
time i/v, allowing the temperature of the eddy to vary. 

~T ~T 
** Te .ffi - ~ ,  Tn = y R  etc. 
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The quantity of heat flowing into the eddy 
during the flight time l/v' is 

Q° == k(4"n'a2)TR(O, a)dO = 

aH--  1 ] k(4,raZ) h' l + ~ F ( X )  (8) ( T o - - T ° ) ~  ~, KH' 

2 
where F(X) = exp (X t) erfc X + ~ X -- 1 (8a) 

and X = HN/(~¢ / ) (Sb) 

This flow of heat results in an enthalpy change of 
the eddy and is reflected as a temperature 
increase, 

t~ -- tx -- Q° (9) 
~,raac, p 

Since To -- To = ½(tz -- t~), one obtains from 
equat ion  (9): 

t 2 - -  t~ 2 a 1 + ah' -~ + F(X) (10) 

Equation (10) contains the surface coefficient of 
the eddy h, which has yet to be evaluated. 
According to the proposed model, the heat 
transfer is characterized by the laminar boundary 
layer at the eddy surface. Possible intluenees of 
curvature behind it are to be ignored, and 
Pohlhausen's expression [26] for flat plate may 
thus be used. Hence, for N ~  = 0"6 to 15, 

h 
Nst, N ~ 3  - -  (1 I) 

A 0.664 
with 

2 - Nk;~ 

A being the skin-friction drag coefficient. For 
the present calculation, the characteristic length 
in N ~  and N~ru is taken as ~ra which is one-half 
of the circumference of a great circle of the eddy. 
Admittedly, such a selection as well as the model 
used for heat transfer and drag calculation is 
somewhat arbitrary. It is / toped that the major 
inaccuracies so introduced could be adequately 

compensated by including one empirical constant 
in the analysis which will be described shortly. 

With the foregoing characteristic length, the 
Reynolds and average Nusselt number of the 
eddy are: 

NI~' = ( u~ +ut2 ux + u; ) v 
e 

U 2 - -  U 1 , r a  
- - - - y -  ~ (12) 

h,(~'a) 
Nr~u'-- k (13) 

It follows that the average Stanton number of 
the eddy is: 

NNu, 
Nst = Nae'---~r (I 4) 

Equation ( l l )  is known to be valid for rela- 
tively high Nl, r fluids as indicated. Since, in this 
paper, one is primarily concerned with heat 
transfer in liquid metals, it is necessary to deduce 
a similar expression for fluids of much smaller 
Nrr. Using the well-known approximate pro- 
cedure of solving the integral momentum and 
energy equation of the boundary layer, one 
obtains: 

A 1-06 
Nst' h'r l/9- 1"64 (15)~ 

Of particular interest is the fact that Nrr which 
occurs in equation (I 1) is raised to the power 
while in equation (15) it is raised to the power ½. 
Inasmuch as it has not been possible to use a 
single expression for the Stanton number, two 
separate expressions for the eddy diffusivity 
ratio will be given. 

2.1. Eddy diffusivity ratio for fluids of Prandtl 
number ranging from 0.6 to 15 
If one introduces the Peelet number of the 

eddy NI~, (=NI~, Nrr) into equation (8b), 
there results: 

As pointed out earlier, due to the arbitrariness of 
the selected shape of the eddy, model for the 

t A detailed derivation is given in [33]. 
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heat transfer process, etc., it was decided to 
replace the constant 0-664 in the Pohlhausen 
equation by an empirical constant b, the value 
of which is to be determined later. Accordingly, 
one writes equation (1 l) in the modified form: 

b 
Nst' ~s/s -- (17) 

• • PZ M 1  IS 
~vpt~t 

Introducing this relation into equations (10) and 
(16) and inserting the results into equation (3), 
yield: 

c n  ") 
c.t,/ 

l + l ~ l l a  ) [ ( u  s - -  u;)/v' 1 ~r-l,s , ,  ~ ,  ( 1 8 )  
I + ~1/[0 .318N?,  + (l/O0v~.*, N~4s)]~ 
{(l/a)[(u, -- u~)/v ] + 0.203bN~? N ~ ,  | 

F(X)/(1 + 0-318bN~ s N~ , )  s} 3 

in which F(X) is given by equation (8a) and 

X ~2] ~ , ~ N i , ~ + ~ t t a  u t ] \  v' / (19) 

2.2. Eddy diffusivity ratio for liquid metals 
Following the same argument expounded in 

the preceding section, one modifies equation (15) 
a s  

b 
Nst' ~rl/s = 1"64 (20) ~ ' P r  N l / S  

Re '  

The corresponding expressions for equation 
(18) and (19) are, for this case, 

¢ /7  

~ M  

1 + ib(1/a) [(ut - -  u~)/v'] N -x is Re, (21) 
1 + ~1/[0.318N~, + (0.609/b) N~*,]) 
{(I/a) [(us -- u~)/v'] + 0"333bN~et, F(X)/ 

(i + 0.522bNb3)*} 
and, 

x = o . s 2 ~  + N~*d~a v' (22) 

Equations (18) and (21) contain common 
unknowns, namely, the ratio of fluctuating 
velocities (u, -- u~)/v', the ratio of mixing-length 
to radius of the eddy l/a, the Reynolds number 
of the eddy Na,, and empirical constant b. 
The following two sections are devoted to their 
discussion and evaluation. 

2.3. Ratio of fluctuating velocities 
Referring to Fig. 2(a), u ~ -  u~ and v' are, 

respectively, the fluctuating velocities in the 
axial and radial direction. Both are complicated 
functions of space and time; their exact nature is 
not known. Customarily, they are treated on a 
statistical basis and expressed in terms of their 
root-mean square values. These two quantities 
are so interpreted in this paper. 

Numerous experiments have been conducted 
by various investigators, notably Laufer [27], 
Reichardt [28], and Wattendorf [29], to study 
the structure of turbulence in two-dimensional 
channels. Laufer [30] also carried out one of the 
most detailed investigations on turbulence in 
fully developed pipe flow. When the ratio of 
either fluctuating velocity to the friction velocity 
v* [ =  x/(goT,dp)] were plotted against the dimen- 
siordess radial location y/r,~, it was found that, 
up to a region very close to the wall, both were 
almost independent of the Reynolds number. 
Laufer's measurements also indicate that 
(u2 - -  u~)/v* and v'/v* vary almost linearly with 
radial location, showing an increase towards 
the wall till a maximum is reached in the buffer 
zone, followed by a rapid drop as the wall is 
approached. Laufer's results may be closely 
approximated by the following expressions: 

v ~  1.95 1 -- 0.64 y (23) 

and v* = 1-08 1 -- 0.36 y ( 2 4 )  

1.80 

~60 

1.40 

V2O 

1-00 

O-80 
0 O-2O O-4O O.6O 0410 ~00 

F]o. 3. Variation of fluctuating velocity ratio with 
radial loati0n across pipe. 
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It follows that, 

u~ -- u~ 1.81 1 -- 0.64y/r, 
v' " = 1 -- 0 .36y/r ,  (25) 

which is shown graphically in Fig. 3. Laufer's 
data were obtained for air, it will be assumed 
that they remain valid for other fluids. 

2.4. Reynolds number of  the eddy Nae, and the 
ratio l/a 

Eliminating (us -- u~) from equations (23) and 
(I 2) gives, 

.~_. 'na , 

which can be shown to equal 

NI~' = 1"53 a/(I -- 0"64---Y ] NRe~(f) ( 2 6 b ) ,  r. r., 

For Nae > I06, Nikuradse [31] reported the 
following expression for the ratio of mixing 
length to pipe radius, 

r./=0"14--0"08(I- Y---)'--O'06 (1 -- Y ] ' ( 2 7 , r . /  r./ 

which will be extrapolated for use at lower N~ 
since no other information is available. 

Next, we shall consider the ratio I/a. In the 
preliminary examination of  the behaviour of 
equation (18), the diffmdvity ratio was calculated 
for air of Npr=0"718 with the empirical 
constant b retained as that originally appeared 
in the Pohlhansen equation, namely, 0.664. 
Computations were carried out for y/r,  = 0.5 
and for three arbitrarily selected values of 
l/a = 2, 3 and 4. The results are summarized in 
Table 1. 

Table 1. Prediction of ,n/,u by equation (18) for air 
o.fNe, = 0"718, b = 0"664, y/r, = 0"5 

eM 

NRe 

I I I - = 2  - = 3  - = 4  g a a 

14,500 1"008 1"018 1"030 
80,300 1"007 1.016 1"029 

It is seen that the calculated ratio (tl/EM iS not 
sensitive to variations in fla. For simplicity we 
select l/a = 2 for subsequent calculations. 

Using Nikuradse's expression for l/r~ and 
l/a = 2, the Reynolds number of the eddy may 
be related to the pipe Reynolds number and 
Darcy friction factor as: 

N v (f/8) = O.766 1 - -  O.64 0 . 1 4  - -  

_ 0 . 0 8 ~ 1 _  y 2 
L rw/ J 

which is shown plotted in Fig. 4. It vanishes at 
the wall, remches a maximum at about y/r~ = 0.5 
and then decreases toward the pipe center. 
-N'Re' may be regarded as a measure of the 
turbulence intensity. 

0.06 

0.05 

O~ 

0.04 

~ 0-03 

z 
0-02 

y/r. 

0.80 ~.00 0-20 0"40 ~60 

Fm 4 Variation of Nae" with radial location 
• " Nl%v'(f/8) 

across pipe. 

Diffusivity ratios for air as listed in Table 1 
are only slightly higher than unity. Page et al. 
[18] reported experimentally determined values 
of a for air flowing between parallel plates. 
Sleicher [19] also reported data for air in turbu- 
lent pipe flow. While there are some ~ n -  
cies between Page's and Sleicher's results, the 
general behavior with respect to the influence of 
Reynolds-number and location across the pipe 
or channel seems to be in good agr~ment.  
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However, Sleicher's data have been chosen for 
the determination of the empirical constant b in 
equation (18)because they were obtained for 
pipe flow. After a few calculations, it was found 
that by assigning b ---- 2.5, the predicted value for 
air at N ~  = 14,500 and y/r,~ ----0-35 could be 
made to agree with Sleicher's data. The reason 
for the selection of this particular y/r~ was that 
the experimental data indicated a nearly constant 
trend beyond this location. It is pertinent that 
the artificial matching of the theoretical equation 
(18) and experimental data was done at only one 
point and only for Nrr ----- 0.718. 

Using the expression for the ratio of fluctuating 
velocities given by equation (25), l/a = 2, and 
b ---- 2.5, equations (18) and (21) finally become: 

~_~ _-- 1 + 6.77~ N ~  = 
eM 1 + 0"75 FxF= 

in which 1 -- 0.64 y/r,~ 
~ =  

1 -- 0"36 y/rw 

and, 

(i) For fluids of Nrr ranging from 0.6 to 15 

(29) 

(29a) 

1 1 F1 = 0.318Nve' + ,,n'a Jwtz "'" Pe, N ~ '  

F, = 3-61¢ + (29b) 

. . . . . .  x~, "'~/e) ,  F( X) + (1 + 0-795N~; 
X ----- 2.38~z/=(N~e/, z + 0"795N~r ~/') 

(ii) For liquid metals 

F~ = 0.318Nr,, + 0.244Ng ~, 
$Pl 

0-833N~, ~ X (2%) 
F, ---- 3.61¢ -~ (1 ~ - ~ , ) '  ( ) 

X = 2"38¢ z/z (1"305 + N ~ P )  

In either case, NPe, = Nne' Nrr, Nse' is given by 
equation (28) and F(X) by equation (Sa). 

For approximate calculations, the following 
may be used: 

(i) For fluids or" N ~  ranging from 0.6 to 15 

cH ---_ ] + 135N-~ u exp [--(y/r,) °'u] (30a) 
eM 1 I 57N~,~'UN~r °'ss exp [--(y/r,~) °'=] 

(ii) For liquid metals 

eh, _ 1 + 135N~ "46 exp [--(y/rw) °'=5] (30b) 
eM 1 + 380N~ 0"~8 exp [--(y/r~,) °'=5] 

both give a maximum deviation of less than 
14 per cent. 

3. COMPUTED RESULTS ON DIFFUSIVITY 
RATIO, a 

Equations (29), (29a) and (29b) have been used 
to evaluate a for fluids ofNrr  = 0"718, 1 and 10 
at several N ~ .  Results obtained foz Nl, r ---- 0"718 
are plotted in Fig. 5. For purpose of comparison, 
Sleicher's experimental results are also shown. 

1"40 N,,~ 

3 ~ 

020 G.40 0~;2 ~e~: ) 3  

y/r. 

Fro. 5. Comparimn of Sleicher's experimental ~za 
with calculated values o f  d i f fmiv i ty  ratio. 

NFr = 0"718 
Theoretic~ prediction 
I , A  Nz~== 1"45 x l0  4 

B N ~ ,  ffi 4-34 x 10' 
3, C Na ,  ffi 8~3 x 10' 

D N a , =  3.96 × 106 
2 Nae = 3"85 x 106 
Sleicher's data. 

It may be recalled that the empirical constant b 
in equations (18) and (21) was determined by 
matching the calculated value of a with Sleicher's 
data at only a single point. It is interesting to 
note that the predicted variation of a with NRe 
and radial location does show fair agreement 
with experiments. While Sleicher reported 
values of ~ for y/rw only up to 0-55, Page's data 
included regions close to the channel center. 
The latter indicate a continuous, slight decrease 
of a towards the channel center--a trend also 
revealed by the present analysis. Fig. 6 illustrates 
the calculated results for Nrr = 1 and 10. The 
former differs from Jenkins' prediction [22] 
which gives a ----- I when N ~  ---- I irrespective of 
Nne. No experimental data for higher Prandtl 
number fluids are available for comparison. 
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FIG. 6. Calculated var ia t ion  of  diffusivity rat io  with 
radial location for two Prandtl numbers and two 

Reynolds numbers. 
Npr = 1"0 - -  - -  - -  NPr = 10. 

One interesting consequence of  the present 
analysis is that a, for any Npr, approaches unity 
as Nae increases indefinitely. When this occurs, 
both the numerator and denominator of equation 
(29) become unity. It implies that at very high 
Nae, the original Prandtl 's mixing-length hypo- 
thesis becomes valid. At this point, a question 
which naturally arises is: Why does the previous 
analysis, such as that of  yon K~irman [7], 
Martinelli [9], or Lyon [10] in which a is assumed 
to be unity for all NI~ and Npr, give good 
prediction of  heat transfer for fluids of  N ~  
equal to or higher than that of  air ? The answer 
lies in the fact that, in such fluids, the thermal 
resistance is essentially confined to the laminar 
sub-layer and buffer region. For  instance, at 
N _ ~ =  10,000, Martinelli [9] reported that 
over 99 per cent of the temperature difference 
occurred in the combined laminar sub-layer 
and buffer zone for a fluid of  Npr = 100. The 
corresponding values for Npr = 1 and 0"01 are 
71 per cent and 21 per cent, respectively. Hence, 
for ordinary fluids, any inaccuracy which one 
introduces in computing the thermal resistance 
of  the turbulent core would have only minor 
effect on ~he prediction of  Nusselt number ;This  
is not the case for liquid metals. 

It is also seen that Sleicher's data for air 
which showed = > 1 at a region close to wall are 
not contradictory to the fact that von Kfirmlin's 
analysis and others ( .  = 1) give reasonably good 
agreement with experiment in so far as the 
prediction of  heat transfer is concerned. In the 
laminar sub-layer, turbulence is, by and large, 
suppressed, and molecular conduction pre- 
dominates. 

The available experimental data of a for liquid 
metals are those of  Isakoff and Drew [15] and 
Brown e t  al.  [20]. Again, for the purpose of  

1.00 

oe( 

o'6( 

0-4( 

0"2( 

0 

I i 

," ' * - ' ~ " - - ~  N~ =6-6x IO s 

" --- ._~.%,, 2.Sxlo s 

F 
I 

I , I ) i 
0-20 04O 0~0 O60 t.00 

y/r. 

RG, 7. Comparison of experimental data of diffusi- 
vity ratio for mercury due to Brown, Amstead and 

Short with calculated values. 
NPr = 0"02 

- -  Theoretical prediction - -  m _ Brown et al. 

comparison, numerical calculations of equations 
(29), (29a) and (29c) were carried out for 
Npr --  0-0239 and 0.02 at several N ~ .  The two 
N ~  selected correspond to those of mercury as 
reported respectively in [15] and [20]. Results of 
computation are shown in Figs. 7 and 8. The 
theoretical prediction of  equations (29), (29a) 
and (29c) is seen to be in fair agreement with the 
experimental measurements of  Brown. It is to be 
emphasized that the comparison made here 
involves no further matching of  the empirical 
constant which has been previously determined 
from results on air. At the lower Na. ,  the agree- 
ment is considered good. At the higher Nae, the 
theory predicts lower values. According to the 
present analysis one s~es that, for liquid metals, 
increasing Na .  tends to increase ¢, a trend which 
is an antithesis to that for air or higher N ~  
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Flo. 8. Comparison of experimental data of diffusi- 
-vity ratio for mer~qmV due to Isakoff and Drew with 

calculated values. 
N~ = 0~239 

-- -- -- hakoff and Drew ~ Present analysis. 

fluids. Fig. 7 shows that there is a slight drop in 
the values of a as the center of the pipe is 
approached--a phenomenon which may also be 
noticed in Brown's data. Isakoff and Drew's 
results do not agree with those o1' Brown et al., 
and hence are not in agreement with those pre- 
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0"20 

0 

i . . . . - ,  z ' t - ' - " l  ~," ~.~ . . . . . . . . . . . . . .  .~ ._ . .~  
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' I  
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. . . . .  : ..... !----I! . . . .  

• oeo 040 0-60 0430 1,0 

y/r. 

F]o. 9. Predicted var ia t ions  o f  diffusivity ra t io  wi th  
radial  loca t ion  as  inf luenced b y  Prand t l  h u m b e r t  a n d  

Reyno l d s  h u m b e r t  
~ N ~  = 0-001 1, A,  X Nae  = 4-34 × 10'  
- -  - -  - -  N~r = 0"01 2, B,  Y N ~  m 3"96 × I0  ~ 

- ~  N~r ---- 0"1 3, C,  Z N ~  = 3"24 × 10'. 

dicted by the present theory. Drew and Isakoff 
based their calculation on tempera~nLre data 
which showed considerable scatter. As will be 
pointed out in a later section, some of their 
reported temperature profiles fell below the 
limiting profile of Nrt ---- 0. This led the writers 
to believe that Isakoff and Drew's results are 
most probably in error. 

Equations (29), (29a) and (29c) have also been 
used to calculate for Nrr = 0"001, 0-01 and 0.1 
and for NRe = 4"34 × 104, 3"96 × 106 and 
3.24 × 106. Fig. 9 summarizes the results 
obtained. For a given Nrr, a increases with 
increase in N~ .  In the limit, as N ~  - ,  oo, a -,  1 
for any Nrr. As the distance from wall increases, 
a also increases, first rapidly and then slowly 
till it assumes a more or less constant value. 
For the highest Prandt] number investigated, 
namely 0.1, there is less variation of a with 
respect to radial location across the pipe, 
particularly when the Reynolds number is 
large. 

4. N U S S E L T  N U M B E R  A N D  T E M P E R A T U R E  

P R O F I L E  F O R  F U L L Y  D E V E L O P E D  P I P E  F L O W  

W I T H  C O N S T A N T  W A L L  F L U X  

The case to be considered concerns the 
turbulent flow of liquid metals in smooth, 
circular pipes with constant wall flux. The fluid 
properties are regarded as constants. This 
problem was first considered by Martinelli [9] 
who recognized the importance of molecular 
conduction in the turbulent core for the transfer 
of heat in fluids of very low Prandtl number, 
such as molten metals. Martinelli's analysis 
was later modified by Lyon [10] who showed that 
the Nusselt number could be expressed as: 

Jo [z'+" (~M/~ J P  (j"UZdZ: 1 _ 2 " Z " - - - a - ~ - - : ~ ' ' N r r "  d Z  (31) 
NNu, 

In the above expression, the Nusselt number is 
based on temperature difference between the wall 
and the bulk of the fluid. Lyon integrated 
equation (31) numerically, us~g point values of 
velocity and cM/v as evaluated directly from 
Nikuradse's data [31]. Like Martinelli, Lyon 
assumed that a = I in his calculations. He 
approximated his results of calculation for 
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Nusselt number by the following interpolation 
formula: 

NNu, b = 7 + 0"025N~e s (32) 

which has been recommended for use in the 
Liquid Metals Handbook [32]. The results of 
experiments are on the average, about 50 per 
cent lower than the prediction of equation (32). 
It is clear from equation (31) that, for a given 
Npr, the Nusselt number depends on a, ~M/V and 
the velocity profile whose effect is reflected in 
the integral j'~ UZdZ. The latter two quantities 
will be discussed separately in the following 
sections. 

q 2 
q,  

4. I. The integral ;~ UZdZ 
For an incompressible fluid of constant 

properties flowing turbulently in a pipe with 
fully developed velocity and temperature profiles, 
Seban and Shimazaki [2] showed that, for 
constant wall flux, the axial temperature gradient 
is independent of the radial position in the pipe. 
Under such circumstance, it can be readily 
shown that the radial q-distribution is given by: 

.= f l / , u + ( l - - y / r . ) d ( y / r . )  

Jo UZdZ = Iou+(l _ y/r,)d(y/rw) 

(33) 

If the logarithmic velocity profile proposed by 
yon K/trmttn [7] were adopted, namely, 

u + =y+, 0 ~ y +  < 5 

u + = - 3 - 0 5 + 5 1 n y  +, 5 ~ y + < 3 0  1(34)  
u + = 5"5 + 2"5 In y+, y+ ~> 30 

the integrals in equation (33) could be readily 
evaluated and the result expressed in a closed 
form. It is, 
q 

m 

q.  
2"75(1 -- y/r,J = + 1"25 In Nae/2x/(f/8) 

-- 1"25y/r,o(2 -- y/r.) In [.y/r. Nxte/2 
x/(f/8)]-- 0"625(1 -- y/r.) (3 -- y/r.) (35) 

1.25 In Nae/2X/(fl8) -- 127.8 
( N a ~ ( f l 8 )  -1 + 22,960[Nae 

• v ' ( f / 8 ) ]  - =  + 0-875 

Equation (35) ignores the influence of laminar 

sub-layer and buffer region. If the latter is con- 
sidered additional terms will appear in the 
numerator of the above equation. A detailed 
derivation has been given [33]. For the present 
analysis, equation (35) may be used for the entire 
cross-section without sacrificing accuracy. Fig. 
10 is a graphical representation of such distribu- 
tion for N ~  ranging from 4 × 10 a to 3.24 × l0 s. 
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FIG. 10. Radial q-distribution in fully developed 
turbulent pipe flow. 

q-distribution according to equation (35) 
w _ _  Martinelli's distribution 
. . . .  Simple distribution used in the present analysis. 

These correspond to the extremes of Nae used 
by Lyon. Calculated data for all intermediate 
Nae lie within the narrow loop bounded by the 
two solid curves. It is thus seen that for the 
realm of Nae considered, the ratio q/q. may be 
closely approximated by a single curve express- 
ible by: 

q.  r~: / 

Lyon's individually computed values agree well 
with this simple result. This is demonstrated in 
Table 2. 

That the q-distribution in turbulent pipe flow is 
insensitive to Reynolds number variation has 
also been confirmed experimentally by Isakoff 
[34]. 

With the foregoing simplification, equation 
(31) could be written as: 

I~o Z'z's 1 - -  ½ l+(~z e ~ / v ) ~  dZ (36) NNu, b 



A MECHANISM OF TURBULENT HEAT TRANSFER IN LIQUID METALS 133 

I 
z 

Table 2. Comparison of the numerical values of the integral o ZUdZ as reported by 

Lyon and the suggested relation given by equation (35a) 

[= ZUdZ due to Lyon ZJ.75 Y z Jo 
r~ 2 

NNe=4"34 × 104 NRe=3"96 x 106 NRef3"24X I0 e _ _  

0 1 0"5022 0"4990 0"5004 0"5000 
0"I 0"9 0"4287 0"4230 0"4216 0"4158 
0"2 0"8 0"3490 0"3430 0"3405 0"3384 
0"3 0"7 0"2735 0"2680 0"2651 0"2679 
0"4 0"6 0"2047 0"2000 0"1974 0"2045 
0"5 0"5 0"1444 0"1410 0"1386 0"1487 
0"6 0"4 0"0936 0"0909 0"0895 0"1006 
0"7 0"3 0"0532 0"0515 0"0508 0'0608 
0"8 0"2 0"0238 0"0230 0"0228 0"0299 
0"9 0" 1 0"0060 0"0058 0"0057 0"0089 
1"0 0 0 0 0 0 

It is interesting to note that the corresponding 
expression used by Martinelli has the exponent 
of Z replaced by 3, since the rather crude 
assumption u ---- Ub, was adopted in his analysis. 

4.2. The ratio o f  eddy viscosity to kinematic 
viscosity, ~ M/V 

A rational calculation of the ratio ~M/V is not 
possible at the present time since no precise 
theory of turbulence exists. Consequently, 
one turns to experimentally measured velocity 
profile for the evaluation of  ~M. After examining 
the several turbulent velocity profiles proposed 
by various investigators, namely, Prandtl [35] 
yon K/trm/m [36], Deissler [37] Reichardt 
[38] Rannie [39] Ross [40] and Pai [41], the 
writers came to the following conclusion. The 
semi-empirical velocity profiles proposed by 
various investigators may seemingly fit well the 
experimental data, it does not necessarily follow 
that the assumed model of  turbulence is precise. 

M calculated from the directly measured velo- 
city gradient across the pipe may not be in good 
agreement with that computed from the semi- 
empirical equation which is supposedly to 
represent the velocity distribution. A detailed 
analysis and discussion is given in [33]. For 
fluids of  relatively high Nrr, any error introduced 
in the evaluation of ~M will produce only minor 
effect on the final result of Nusselt number 
calculations. This is no longer true for liquid 

metals. In view of these observations, it was 
decided to use Nikuradse's data of ~M/v [31] 
which were evaluated directly from the measured 
velocity gradient. However, no data were report- 
ed by Nikuradse for y/re < 0"02. Extrapolation 
was then made with the aid of K~rm/m profile as 
given by equation (34). For those cases of N ~  
for which no information was reported by 
Nikuradse, Deissler's velocity profile [37] has 
been used for the determination of cM. 

4.3. Result o f  Nusselt number calculations 
With ,, and G~r/v known, the Nusselt number 

may be evaluated from equation (36), using 
numerical integration. For the purpose of  com- 
parison, the Prandtl and Reynolds number 
selected were those used by Lyon, i.e. Nrr = 0, 
0.001, 0.01, and 0.1 and N ~  = 4-34 x 104, 
3.96 x 106 and 3.24 x 106. For the fimiting case 
of Nrr ---- 0, equation (36) may be readily inte- 
grated to give N~e. ~ = 7. This limiting Nusselt 
number is independent of  the Reynolds number, 
at least for the range considered in the present 
work. As N ~  ~ oo, the flux distribution becomes 
linear which has been assumed by Martinelli. 
Consequently, the exponent of Z in equation 
(36) should be replaced by 3, which gives a 
limiting value of  8 as Nrr -* 0. 

Calculated values of  Nusselt number for the 
four Nrr and three Nae selected are listed in 
Table 3. Tabulated also are the results reported 
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Table 3. Calculated values of  Nueselt number 

Npr 

0 0 
0.001 43.4 
0.01 434 
0. I 4340 

0 0 
0~01 396 
0.01 3960 
0.1 

0 
0.001 
0"01 

Nsu,s 

Lyon's theoretical 
result 

N~e 

39,600 

% 
32,4OO 

6"83 
7"30 

10.30 
30.5 

Present theory 
equation (36) 

7 
7.04 
8"01 

26-07 

7 "05 : 7 
9"54 7-46 

26-5 i 16.9 
132.0 108 

7-17 i 7 
20-8 ! 12"5 

100 , 65"2 

by Lyon. A significant difference is seen to exist. 
For design computations, Lyon approximated 
his calculated results by equation (32) with a 
maximum deviation of 12 per cent. Lyon's 
expression implies that viscosity has no effect on 
turbulent heat transfer in liquid metals. This, 
however, can not be confirmed by the present 
results. Fig. 11 illustrates the independent effect 
of  Prandtl and Reynolds number on the Nusselt 
number. For N~r < 0"l, and N~e < 15,000, the 
theoretical results of the present analysis could 

be represented by an interpolation formula 
of the form: 

N~u, ~ ---- 7 + 0"05 N~ *~ N~ ~s (37) 

which gives a maximum deviation of less than 
12 per cent. 
To ascertain the accuracy of equation (37), 

some of Lubarsky and Kaufman's re-evaluated 
experimental data on mercury and lead-bismuth 
eutectic [1] were reproduced in Figs. 12(a, b, c) 
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FiG. 12(a). C o m ~ a x ~ n  of ~ Ntmelt 
number for me~m'y due to JohnIon, ClabauIh and 

Hartnett Ill with the ~ m a t  anal~i~. 
.... N~r ~ 0"022 

I Present analy~ equation (37). 

Fu3. 11. C o ~ n  of Lyon's equation and the 
predicted N~t numbers a~ording to the present 

analysis. 
- -  - -  - -  Lyon's equation NNu,e ~ 7 + 0.025N~o's. 
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FIG. 12(b). Comparison of  experimental N u ~ e l t  
number for mercury due to Trefthen [1] with the 

present analysis. 
N ~  = 0@2 

. . . .  Lyon 
Present analysis, equation (37). 
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FIG. 12(¢). Comparison of  experimental Nmse i t  
number for mercury due to Stromquist [1 ] with the 

present analysis. 
N~----- 0.02 

- -  - -  ~ Lyon 
Present analysis,  equation (37). 

and Figs. 13(a, b). Comparison is made to 
those predicted by equation (37) as well as to 
those of  Lyon. The improvement over Lyon's 
expression is obvious. However, according to 
the proposed theory, the lowest possible Nusselt 
number is 7 but the bulk of  experimental data at 
low Peclet numbers indicate a value considerably 
less than 7. It is not clear at the present time 
whether this indicates a deficit in the theory or is 
due to errors in experimental data. In a dis- 

cussion of [24], Lyon pointed out that since most 
of the data in this range of Nve were obtained in a 
,horizontal tube with dense fluids (mercury and 
lead-bismuth), the stratifying effect of  thermal 
expansion might have been the cause. 

Having carefully examined published data on 
liquid metal heat transfer, Lubarsky and Kauf- 
man [1] proposed an empirical equation of the 
f o r m :  

a 

Z 

N~u, b = 0"625 N~'  (38) 

1(3o 

1 
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3 ! ! !  t I l l i l  
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F I o .  1 3 ( a ) .  C o m p a r i s o n  of experimental Nuuel t  
number for lead-bismuth eutectic due to Seban [ 1 ]  

with the p ~ t  analysis. 
N w  = 0 4 ) 2  

- -  - -  Lyon  
Present  analysis, equation (37). 
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FIG. 13(tO). Compar i son  of  experimental Nmael t  
number for lead-.bismuth eutectk  due to Johnson, 
Harmett and Clabaush [1 ] with the Immmt analysis. 

N~r = 0~23 
- -  - -  - -  Lyon 

Present analysis, equation (37). 
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which has been chimed to best fit most of the 
fully developed turbulent heat transfer data on 
liquid metals. It is shown plotted in Fig. 14 
along with the theoretical relation depicted by 
equation (37). Like Lyon's expression, equation 
(38) does not involve viscosity. At the present 

100 
il ! , 

L Q.Qg~ _. 

IO 

:'il i I i 1 

200 iO 3 I04 2 xlO 4 

N~ 
Fro. 14. Comparison of Lyon's th~rvtieal prediction, 
the empirical relation due to Lubarsky and Kaufman 

with the pre~nt analysis. 
-- -- Lyon Nxu@ = 7+0"025N~ °'s 

Present analysis N~,~ = 7+O'05N~°'nN~ °'0~ 
. . . . .  Lubarsky and 

Kaufman N~r~,~ == 0"625Npe °4. 

time, experimental data are not available to con- 
firm or to contradict the independent effect of  
Nrr as indicated by equation (37). 

4.4. Temperature profile 
If  the dimensionless variable Z is introduced 

into equation (2), followed by using the q-distri- 
bution given by equation (35a), one obtains, 
upon integration, 

qw rw r 1 Z °'75 
tw -- t = ,,i, d-7-kl, l+a(¢M/v)NI ,  r d Z  (39) 

Hence, the normalized temperature profile is 

tw --  t f{ {Z°'Ts dZ/[ l  + a(EM/V) Nrr]} (40) 
tw -- t, = fo 1 {Z°'¢SdZ/[I + a(,M/V)NPr]} 

For the limiting case of  vanishingly small Prandtl 
number, but finite NI~, equation (40) reduces to a 
simple form: 

t~ -- t _ 1 -- Z 1"75 (41) 
t . , ,  - -  te 

which is independent of  the Reynolds number, 
at least for the range considered in this paper. 
An interesting corollary is: For a fluid of very 
low Nra-, say 0.001 or less, one might expect that 
the influence of  Nae on both temperature profile 
and NNu, b would be small. 

On the other hand as Nl, e-~ oo, the velocity 
profile becomes flat, and the heat flux (q/A) 
distribution becomes linear. The temperature 
distribution is then given by: 

tw --  t f~ {ZdZ/[1 + a(eM/V) Nl'r]} 
tw --  te = :~ (ZdZ/[ I  + a(eM/V) NPr]} (42) 

which has been indiscriminately used by 
Martinelli [9] for all NI~. If, furthermore, the 
condition Nrr ~ 0 is introduced into equation 
(42), there results, 

tw -- t 
- -  = 1 - -  Z 2 ( 4 3 )  
tw -- tc 

which is a parabolic distribution. 
Several temperature profiles have been calcu- 

lated by numerical integration for the following 
eases for which experimental data are available 
for eomlmrison: (i) Mercury of Nrr = 0.0239; 
Npe = 1"19 × 105and3.73 × 10S. Data reported 
by Isakoff and Drew [15]. (ii) Mercury of 
N r r = 0 " 0 2 ;  N ~ = 2 " 5  × 106 and 6"6 × I06. 
Data reported by Brown et al. [20]. Results of  
computation are shown plotted in Figs. 15(a, b) 

bOO 

f I -- t 

i / /  4- " ' \  , [ 

o o  

/t ! i 
O40 

0 . ~ ~  

0 0.20 0-40 0.60 060 ~.00 

y/r. 

Fro. 15(a). Comparison of measured temperature 
distribution in mercury by Isakoff and Drew [15] 

with calculated profiles. 
© Isakoff and Drew Nse = 1"19 × 10 6 
+ Isakoff and Drew N~e = 4"73 × 104 

- -  - -  - -  Martinelli 
- -  Present analysis. 
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and Figs. 16(a, b). Included are Martinelli 's ,oo 
theoretical predictions. In general, Martinelli 's 
profile exhibits a steeper temperature  change at ~o - -  
the wall vicinity than that predicted by the 
present theory. This is to be expected since 
Martinelli 's analysis predicts Nusselt numbers ,_,~.~ o~o 
which are too high. F rom the plotted results, it is 
seen that the temperature profile as calculated o~o 

f rom equation (40) has somewhat better agree- 
merit with measured data than Martinell 's o zo 
prediction. The difference, however, is not great. 

too 
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0 0-20 040 
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0-60 0-80 ;-00 
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Fro. 15(b). Comparison of measured tempcraturc 
distribution in mercury by Isakoff and Drew [15] 

with the calculated profile. 
O Isakoff and Drew N~r == 0.0239, NR~ --~ 3"73 x los 

- -  m Martinelli 
Present analysis. 
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0.20 0.40 060 OeO I.O0 

FIG. 16(a) Comparison of measured temperature 
distribution in mercury by Brown, Amstead and 

Short [201 with the calculated profile. 
O Brown et al. Npr = 0~2~ NRo = 2"5 x los 

- -  - -  - -  Martinelli 
Present analysis. 

r 0"~0 I I t I 040 0"60 ~ "00 

FIG. 16(b). Comparison of measured temperature 
distribution in mercury by Brown, Amstead and 

Short [20] with the calculated profile. 
OBrowneta l .  Nrr=0"02, NRe=6"6 × l0 s 

- -  - -  Martinelli 
Present analysis. 

In a discussion of a recent paper [24], Sleicher 
pointed out that normalization of  temperature 
profiles often made it inadequate for comparison. 

I t  should be mentioned that  the experimental 
data of  Isakoff  and Drew exhibit, in many  cases, 
considerable scatter. Many of  their data for 
Nae ----- 4-73 x 104 fell below the limiting 
profile of  Npr = 0 as shown in Fig. 15(a), which 
is most  unlikely. As pointed out earlier, this 
consideration made the writers doubt  seriously 
the accuracy of  the m-values reported by Isakoff  
and Drew. In general, Brown's data  had less 
scatter and showed much better agreement with 
the theoretical results. 

Computed results on Nusselt number  and 
temperature profile in fully developed pipe flow 
with constant wall temperature will be given in 
a subsequent paper. 

REFERENCES 

I. B. LUBARSKY and S. J. KAUFMAN, ~eview of Experi- 
mental Investigations of Liquid Metal Heat Transfer. 
NACA Report 1270 (1956); NACA TN 3336 (1955). 

2. R. A. SEBAN and T. T. SHIMAZAKI, Trans. Amer. Soc. 
Mech. Ensrs. 73, 803 (1951). 

3. P. SCHNEIDER, Effect of Axial Conduction on Heat 
Transfer in the Entrance Regions of Parallel Plates 
and Tubes. Heat Transfer and Fluid Mechanics 
Institute, Preprints of Papers, Stanford University, 
p. 41 0956). 

4. O. REYNOLDS, Proc. Manchr. Lit. Philos. Soc. 14, 7 
(1874). 



138 N . Z .  AZER and B. T. CHAO 

5. G. I. TAYLOg, Con~tions at the Surface of a Hot 
Body Exposed to Wind. Technical Report of the 
Advisory Committee for Aeronautics, Vol. 2; 
Reports and Memo no. 272, 423 (1916). 

6. L. PgAV~TL, Phys. Z. 29, 487 (1928). 
7. T. yon K,I, gMgN, Trans. Amer. Soc. Mech. Engrs. 61, 

705 (1939). 
8. g. C. MARTINELLI, L. M. K. BOELTeR and F. JON- 

N~SZN, Trans. Amer. Soc. Mech. Engrs. 63, 447 
(1941). 

9. R. C. M,~Tr~LLI, Trans. Amer. SOC. Mech. Engrs. 
69, 947 (1949). 

10. R. N. LYON, Chem. Engng. Pragr. 47, 75 (1951). 
11. R. G. DEmSLF.R, Analytical Investigation of Turbulent 

Flow in Smooth Pipes with Heat Transfer with Variable 
Fluid Properties for Prandtl Number of 1. NACA "IN 
2242 (1950). 

12. R. G. Dglsatam and C. S. EIAN, AnalyticalandF, xperi- 
nafntal Inoestigation of  Fully D e ,  loped Turbulent 
Flow of  Air in a Smooth Tube with Heat Transfer with 
Variable Fluid Properties. NACA TN 2629 (1952). 

13. W. A. Stl~pp~ZD. MS Thesis, Mech. Eng. Dept., 
University of California (1946). 

14. W. H. CO~COaAN, B. ROUDEaUS, and B. H. SAOE, 
Chem. ~ .  Pratt. 43, 135 (1947). 

15. S. E. IaAgO~ and T. B. Da~w, General Discussion on 
Heat Transfer p. 405, Institution of Mechanical 
~ ,  London 0951). 

16. R. A. Sv. .~ and T. T. SmMAZAKL General Discu~sian 
on Heat Transfer p. 122. Institution of Mechanical 
Ensin(~a's, London (1951). 

17. W. H. CoRco~N, F. PAGE, W. G. SctRJt~3~t and 
B. H. SAGE, Indastr. E~,ng. Chem. 44, 410 (1952). 

18. F. PAGE, W. G. SCHLINGER) D. K. Bar~ux and 
B. H. SAGE, Industr. EItff~. Chem. 44, 424 (1952). 

19. C. A. SLe[ctnnt, JR., Ph.D. Thesis in Chemical 
Ent, lneering, University of Michigan (1955); Trans. 
Amer. SOC. Mech. Engrs. 80, 693 (1958). 

20. H. E. BRowN, B. H. , t a~ re~  and B. E. StiORT, 
Trans. Amer. Soc. Mech. Fatgrs. 79, 279 (1957). 

21. H. LUDWIG, Z. Flugwiss. 4, 73 (1956). 
22. R. JENKINS, "Variation of  Eddy Conductivity with 

Prandtl Modulus and its use in Prediction of Turbulent 

Heat Transfer Co¢~cieats. Heat Transfer and Fluid 
Mechanics Institute, Preprints of Stanford Univer- 
sity, p. 147 (1951). 

23. R.G. DElSSl.r~z, Analysis of Fully Developed Turbulent 
Heat Transfer at Low Poclet Numbers in Smooth 
Tubes with Application to h'quid Metals. NACA RM 
E52F05 (1952). 

24. P. S. LYKOUDZS and Y. S. TOULOUrdAN, Trans. Amer. 
Soc. Mech. Engrs. 653 (1958); P. S. L,/KOUDtS, 
Analytical Study of  Heat Transfer in Liquid Metals. 
Ph.D. Thesis, School of Mechanical Engineering, 
Purdue University (1956). 

25. L. PRANOTL, Z. angew. Math. Mech. 5, 136 (1925); 
NACA TM 1231 (1949). 

26. E. POHL,AUSEN, Z. angew. Math. Mech. 1, 115 (1921). 
27. J. LAUt~R, Investigation of  Turbulent Flow in a Two- 

Dimensional Channel. NACA Rept. 1053 (1951). 
28. H. I~ICH~ZDT, Z. angew. Math. Mech. 13, 177 (1933); 

Ibid. 18, 358 (1938). 
29. F. L. WAYrENDORF, .I. Aero. Sci. 13, 200 (1936). 
30. J. LAUI.'ER, The Structure of  Turbulence in Fully 

Developed Pipe Flow. NACA TN 2954 (1953). 
31. J. NIKURADS£, Ver. dtsch. Ing. Forsch. 356 (1932). 
32. R. LyON (Editor) Liquid-Metals Handbook (2nd Ed.). 

USAEC (1952). 
33. N. Z. AZER, Ph.D. Thesis, University of Illinois 

(1959). 
34. S. E. ISAKOFF, Ph.D. Thesis, Columbia University 

(1952). 
35. L. PRANi~TL, Ergebnisse der Aerodynamischen Ver- 

suchanstalt zu GOttingen, III series (1927). 
36. T. yon KARM~N, Mechanical Similitude and Turbu- 

lence. NACA TM 611 (1931). 
37. R. G. D E ~ t ~ ,  Analytical and Experimental Investi- 

gation of Adiabatic Turbulent Flow in Smooth Tubes. 
NACA TN 2138 (1950). 

38. H. REIC~DT, Z. angew. Math. Mech. 31, 208 (1951). 
39. W. D. RA~r~IE, Ph.D. Thesis, California Institute 

of Technology (1951). 
40. D. Ross, Proceedings of  the Third Midwestern Con- 

ference of Fluid Mechanics. University of Minnesota 
0953). 

41. S. I. PAI, J. Franklin Inst. 25b, 337 (1953). 


