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Abstract—A simplified mechanism of turbulent heat transfer, based on a modification of Prandtl’s
mixing-length hypothesis, has been proposed. It is assumed that there is a continuous change of momen-
tum and energy during the flight of the eddy. Two expressions giving the ratio of eddy diffusivities for
heat and momentum were obtained for fully developed pipe flow. One is for fluids of Prandtl number
ranging from 0-6 to 15 and the other for liquid metals. Both correctly predict the influence of Reynolds
number, Prandt] number and radial location across the pipe on the diffusivity ratio when compared to
trends revealed by limited published data.

Computation of Nusselt number and temperature profile in liquid metals were carried out under
conditions of constant wall flux using the deduced expression for diffusivity ratio. They agree well with
experimental results. For practical calculation of film coefficient of heat transfer, the following inter-
polation formula may be used:

Nxu =17 + 0-05 Np:®# Npe0'7?

which fits the calculated data with a maximum deviation of less than 12 per cent for Ne, < 0-1 and
Npe < 15,000. Limiting values of Nusselt number as Npr— 0 and Nre — o0 were discussed.

Résumé—Un mécanisme simplifié de la transmission de chaleur turbulente, fondé sur une modification
de I'hypothése de Prandtl sur la longueur de mélange, est proposé. On suppose qu’il y 2 une variation
continue de la quantité de mouvement et d’énergie pendant la trajectoire de la masse tourbillonnaire.
Deux expressions donnat le rapport des diffusivités turbulentes pour la chaleur et la quantité de
mouvement ont été obtenues dans le cas d’un écoulement pleinement établi dans une conduite. L'une
est valable pour les fluides dont le nombre de Prandtl varie de 0,6 & 15 et I’autre convient pour les
métaux liquides. Ces deux expressions permettent de prévoir correctement I'influence du nombre de
Reynolds, du nombre de Prandtl et de la distance i I’axe de 12 conduite sur le rapport des diffusivités,
comparativement aux tendances indiquées par les quelques résultats publiés.

Le calcul du nombre de Nusselt et du profil des températures dans les métaux liquides a été effectué,
dans les conditions de flux de paroi constant, en se servant de I’expression obtenue pour le rapport
des diffusivités. Ce caicul est en bon accord avec les résultats expérimentaux, Pour le calcul pratique
d’un coefficient de transmission de chaleur surfacique, on peut utiliser la formule d'interpolation
suivante

Nyu = 7 + 0,05 Np,%% Np, 077

qui donne les résultats calculés avec un écart maximum inférieur 4 129 pour 0,1 < Np, < 15.000.
Les valeurs limites du nombre de Nusselt quand Ny, = 0 et Np, = o sont discutées.

Zusammenfassung—Fiir die turbulente Wiérmeiibertragung wird ein vereinfachter Mechanismus
vorgeschlagen, der auf ciner Abwandlung der Hypothese der Mischungslinge nach Prandtl beruht.
Es wird angenommen, dass sich wihrend der Bewegung eines Ballens Impuls und Energie kontinuierlich
éndern. Fiir voll entwickelte Rohrstromung erhiilt man zwei Ausdriicke filr das Verhiltnis der
turbulenten Leitféhigkeiten fiir Wiirme und Impuls, einen fiir den Bereich der Prandtlzah! von 0,6 bis
15 und den anderen fiir fliissige Metalle. Beide geben den Einfluss der Reynoldszahl, der Prandtizahl
und der radialen Koordinate im Rohr auf das Verhiiltnis der Wirmeleitféihigkeiten richtig wieder,
wenn man sie mit Literaturwerten vergleicht.
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Nusseltzahlen und Temperaturprofile fiir fliissige Metalle wurden unter der Bedingung konstanter
Wirmestromdichte an der Wand berechnet, wobei der abgeleitete Ausdruck fiir das Verhiltnis der
Leitfihigkeiten verwendet wurde. Die Ergebnisse stimmen gut mit Messungen iberein. Fiir die
praktische Berechnung kann foigende Gleichung verwendet werden.

Nyxy = 7 + 0,05 Np%% Np %™
Diese Gleichung gibt die errechneten Werte mit einer Grossenabweichung von weniger als 129,
Np: < 0,1 und Npe < 15000. Auch die Grenzwerte der Nusseltzahl fiir Np; — 0 und Ngp. —
werden diskutiert.

Abstract—IIpensaraerca ynpoilleHHbI MeXaHuaM TypOyTeHTHOTO TemIoo0MeHa, OCHOBAHHEN
Ha BHIOM3MeHEHHON rumoreae IIpannraa o qnuHe cMeulennd. JomyckaeTcs, YT0 MPOMCXORUT
HeOpepHBHOE M3MEHEHUWe KOJIMYeCTBA ABMKEHUA ¥ OHEPrMM 3a BpeMA IBH/KEHUA BHXPH.
Ilna cTaGMIMBMPOBAHHOrO MOTOKA B TpyGe MOJy4eHH ABA COOTHOUICHHMA MEHIY KOaPHH-
nMeHToM Anddysun BUXPA mpM NepeHoCe Telia M KOJH4eCTBOM JBikenud. O0a BHparkenuA
NpaBUIILHO 0ToGpaskaloT BausAnKe kpuTepues Peitnosnsnca, [Ipanaras n paguna;tsrolt Koopan-
HATH, YTO M MOATBEP:KAAETCA CPABHEHMOM C NMEIOMUMUCH OMYOIUMKOBAHHKMHE JAKHBIMM.

Buunciesue kputrepmsa HycceldpTa M TeMIepaTypHOro NPOQHIA B KHIKUX MeTaJllax
NPOBOSMIIOCH B YCJIOBHAX MOCTOAHHOrO IMOTOKA Tensa Ha CTeHKe C HCMO/1b30BAHHEM COOTHO-
wenHA KoadPunuento Auddyaun BUXPA. OTH JaHKLE XOPOLIO COTIACYIOTCA ¢ Pe3yJIbTaTaMu
aKcnepuMeHTa. JJAS NMPaKTHUECKOTo pacuéra KO3QPUIMEHTA TEII005MeHa MOHHO HCHOJIB30-
BaTh CJIEAYIOILYI0 HHTOPHOJALMORHYI0 opMyiy

Nruw =7 4 0,05 Npc® 25 Npe ™'

KOTOpas JaéT MeHbllle OTKIOHEHHA ueM 129 nisa Nee < 0,1 1 Nre < 15 000. Paccmorpennt
npefeabHble 3HaveHuA kputepnr Hycceapra mpu Ner — O u Nre — 0.

NOMENCLATURE

radius of the eddy (ft);
area per unit length of pipe (ft?/ft); Ky
specific heat at constant pressure
(B.t.u./lb °F);t

pipe inside diameter, 2r,, (ft); v,
mass unit conversion  constant
(Ib ft/Lb hr?);+ T
surface conductance (B.t.u./hr ft? °F); o,
thermal conductivity of fluid
(B.t.u./hr ft °F);

mixing length (ft);

rate of radial heat flow at any radius r
per unit length of pipe (B.t.u./hr ft);
radius (ft);

inside radius of pipe (ft);

fluid temperature (°F);

axial velocity (ft/hr);

mean velocity in pipe (ft/hr);

(ft¥/hr);

(ft?/hr);

dynamic viscosity of fluid (ib/ft hr);
kinematic viscosity of fluid (ft*/hr);
density of fluid (Ib/ft3);

. shear stress at any radius r (Lb/ft2);
time (hr).

Dimensionless quantities
b,

(20);

Darcy friction factor;

Nusselt number, 2#D/k;

Peclet number, Nge Npr = 4 D/x;

Prandtl number, c,u/k = v/«;

Reynolds number, u,D/v;

ey, eddy diffusivity for momentum transfer

thermal diffusivity of fluid, = k/c,p

empirical constant in equations (17) and

fluctuating velocity in radial direction
(ft/hr);

friction velocity defined by

v* = +/(g.7u/p) (ft/hr);

radial distance from pipe wall (ft);

eddy diffusivity for heat transfer (ft2/hr);

t Lb represents pounds force, and -Ib pounds mass in
this paper.

¥
€H,

Stanton number, Nxu/NreNer="h/c,pu,;

Npe', Nre', Nsi' refer to eddy;

U =uu;

ut = ufv*,

y*, friction distance parameter defined by
yr=uvtyv

VA = riry;

a = epg/ey, ratio of eddy diffusivity of

heat to momentum;
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Subscripts
b, bulk;
¢,  center of pipe:
e, eddy;
w, wall

Other symbols or subscripts that might be
used are defined in the text.

1. INTRODUCTION

THE advantage of using liquid metals as heat-
transfer media is primarily due to their high
conductivity, relatively low viscosity and high
boiling point. Among the disadvantages, one
may mention the difficulty of handling. Some
liquid metals are corrosive and chemically
reactive. Techniques are being developed to
overcome these difficulties.

After the World War 11, a widespread interest
has appeared in using liquid metals as a coolant
in nuclear-chain reactors. In spite of the many
attractions and the potentialities of its use in
industrial applications, the mechanism of turbu-
lent heat transfer, even under the simple condi-
tion of fully developed pipe flow, is not well
understood. Lubarsky and Kaufman [1] made a
thorough examination and re-evaluation of
the experimental results on film coefficient of
heat transfer reported by numerous investigators
up to 1953, They observed that the bulk of data
for Nusselt number were lower than those pre-
dicted by the then existing theoretical analyses.
After reviewing the available literature on the
subject, and performing some preliminary
analysis, the writers were led to believe that a
major reason for the observed discrepancy
could be due to the oversimplified relation
commonly assumed for eddy diffusivities of heat
and momentum. An improved macroscopic
theory of turbulent exchange mechanism is
herein proposed which brings closer the theoreti-
cal predictions and measured data, both for heat-
transfer coefficients and temperature profiles.

The governing equations for the analysis of
turbulent heat transfer in circular tubes, at a
large distance from the entrance, where both the
velocity and temperature profiles are fully
developed,t may be expressed as:
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8 _ du
9 _ a
AC,P - (K + 6}I) dy (2)

Equations (1) and (2) are deduced from the time
averaged Reynolds momentum and energy
equation for axially symmetric incompressible
flow in a pipe, using the following assumptions:

(a) The flow is steady on the average.
_(b) All properties are constants.
(c) Axial conduction is negligible when com-
pared to axial convection.}
(d) Frictional heating is negligible.

The analogous nature of momentum transfer
and heat transfer is evident from the foregoing
pair of equations. They are linked to each other
through the relationship between the two eddy
diffusivities. Such a relation depends on the
physical model which one selects.

Reynolds [4], who made the first important
step in the analysis of turbulent exchange
mechanism, postulated that energy and momen-
tum were transferred in the same manner.
Reynolds analogy, as the postulate is commonly
known, implies ey = ep. Taylor [5], Prandtl
[6], von Kdrman [7], Martinelli (8, 9], Lyon [10]
and others [2, 11, 12] all adopted this assumption
in their analysis of turbulent heat transfer.
Relatively recently, various experiments have
been conducted to determine the diffusivity
ratio « from measured temperature and velocity
profiles in fluids flowing turbulently in circular
tubes as well as between parallel plates [13-21].
It has been established that a« is not a constant
and, with even more certainty, ey cannot in
general be equal to ep. In spite of the dis-
crepancies which exist among the published
data, it appears that the following has generally
been agreed on:

(a) The diffusivity ratio, a, is not a constant
across the tube.

(b) For air, a is greater than unity. It exhibits
higher values in regions close to the wall and has

t Seban and Shimazaki’s definition of fully developed
temperature profile is implied, see [2].

+ Schneider [3] has demonstrated that this is a good
assumption provided that Ny, > 100.
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a decreasing trend toward the pipe center. For
flow at high subsonic Mach numbers, an
opposite trend has been reported [21]). The
latter may be attributed to compressibility.
Increasing Nge tends to reduce « but in no case
is it less than unity.

(c) For liquid metals, a is less than unity. The
variation of o with a greater distance from the
wall shows a trend opposite to that described in
(b) above. At a fixed Nge, a increases first
relatively rapidly and then more slowly as one
moves away from the wall. Increasing Nge tends
to increase a but in no case it is greater than
unity.

Jenkins [22], Deissler [23] and recently Lykoudis
and Touloukian [24] attempted to evaluateaon a
theoretical basis by modifying Prandtl’s mixing-
length theory. All the models proposed failed
to predict the behavior of a as summarized
above.

2. SUGGESTED MODEL FOR THE MECHANISM
OF TURBULENT EXCHANGE—MODIFIED
MIXING-LENGTH THEORY

In 1925, Prandtl [25] proposed the now famous
mixing-length hypothesis. It was presumed that
the eddy preserved both its momentum and
energy while travelling between layers of a fluid
before mixing occurs. Referring to Fig. 1(a), an
eddy originated at layer (1) and moving upwards
preserved its velocity u, and temperature ¢,
over an average distance / called the mixing-
length till it reached layer (2) where it mixes with
the bulk of fluid there and completely loses its
identity. An eddy created at layer (2) and
moving downwards behaves in a similar way as
illustrated in Fig. 1(b). Conceivably, neither the
momentum (in the u-direction) nor the energy
may be conserved during its travel. In fluids of
high thermal conductivity, heat transfer at the
surface of the eddy may become appreciable.
Thus in Fig. 2(a), an eddy created at layer (1),
with velocity u, and temperature 7, will attain a
velocity u; and temperature 7 before mixing
takes place at layer (2). A similar event takes
place for an eddy moving towards the wall as
illustrated in Fig. 2(b). With this simple modifi-
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Fi1G. 1. Prandtl’s model of turbulent mixing: (a) eddy
moving upward; (b) eddy moving downward.

cation of Prandtl’s mixing-length hypothesis,
one has:

en  (t— )/t — )
ey (up— Dy — uy)

— 1+ (uy — up)/(ug — uy)
14+ ( — )ty — 1)
for an eddy moving upward (3at)

and

€H (tg — t)/(ta — 1)

e (uy— w)/(uy — uy)

_ 1+ (g — u)/(uy — 1)
1+ (= 1)/(t; — 1))
for an eddy moving downward (3b)}

In order to maintain continuity, one would
logically assume that there will be just as many
eddies moving upward as there are moving
downward. (Equations (3a) and (3b) are, in
effect, identical.)

t See (33) for derivation.
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In the foregoing equations, (u, — #;) and
(t; — 1)) are conceived, respectively, as the
flunctuating axial component of .velocity and
temperature at layer (2). The corresponding
fluctuating quantities at layer (1) are (u, — u,)
and (1; — 1;). i

--—Eddy just before
disintegration

“Ecay of creation
Temperotyre
Frotiie (o)

Velocity
profile

~Eddy just before
dsmtegration

(o)

Fig. 2. Modified Prandtl’s model of turbulent mix-
ing: (a) eddy moving upward; (b) eddy moving
down L

To ascertain the influence of fluid drag and
heat transfer at the surface of the eddy, it is
assumed that they are both associated with its
boundary layer. For simplicity, the eddy is
presumed to be spherical. As it moves from
layer (1) to layer (2), its average axial velocity is
#u, + u;) while that of the surrounding fluid
is ¥(uy + u;). Application of the momentum
principle yields,

u, — u\2 1
A-g(zz 1)S;,=pV(u1’——u1) @)

S being the surface area of the eddy, V its
volume, //v, the time required for an eddy to
travel between layers (1) and (2) and A the
average friction coefficient defined by:

Te8e
ip[}(uz + uy) — $(uy + w)?
_ Tefe
i — )P
For spherical eddy of radius a, V/S =a/3.
Equation (4), upon rearrangement, becomes

ui—"u1=3 _lug'—’u{
U — Uy ih(a) 4’ ®)

To estimate the amount of heat transfer
during flight, the spherical eddy is conceived to
have an average temperature 7, [=4(t, + #)]
being immersed in an immense fluid initially at a
uniform temperature Ty [=4(7, + £;)). The film
coefficient of heat transfer at the eddy surface
is h,. We shall now proceed to evaluate the heat
transferred from the surrounding fluid to the
eddy during the flight time //v’. With this sim-
plified model,t the differential equation of the
temperature field in the surrounding fluid and
its initial and boundary conditions are as follows:

To—x(TRR-I- ZTR) a< R<

T, R) = T,; Tr(9, a)

= —KW[T, — T(8, a)}, b =h7: 6

The solution of equation (6) is
T — T 0 —_ a ah’ {

T.=T, R1+ak

—erf [m] — exp [H(R — @)+ H™8] X % (7)
X erfc [2V(x0) + H\/(xﬂ)]}

where He 1 +a ok’ (7)

1 An alternative model would be to assume that the
surrounding fluid is at a constant, uniform temperature
T, and to calculate the total heat transferred during the
time J/v, allowing the temperature of the eddy to vary.
T

T
2T9--37,Tn=3ketc
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The quantity of heat flowing into the eddy
during the flight time /v’ is

Q, = F‘ k(4na®)Tr(0, a)db =
0

W
2 —_
16(4‘”‘z )(To Te)l + ﬂh’

[ + S Fo]®

UI
where F(X) = exp (X®erfc X + \/_2— X —1 (8a)
™

()

This flow of heat results in an enthalpy change of
the eddy and is reflected as a temperature
increase,

and (8b)

Q. ©)

t—t =
! ' $madc,p

Since T, — T, = 3(t, — 1), one obtains from
equation (9):

aH — 1
+ TF(X)] (10)

v «H?

h—t_3« W !
h—1 2al+ak

Equation (10) contains the surface coefficient of
the eddy A, which has yet to be evaluated.
According to the proposed model, the heat
transfer is characterized by the laminar boundary
layer at the eddy surface. Possible influences of
curvature behind it are to be ignored, and
Pohlhausen’s expression [26] for flat plate may
thus be used. Hence, for Npr = 0:6 to 15,

Now N3 = 3 an
. A 0664
with i = —]V‘R?

A being the skin-friction drag coefficient. For
the present calculation, the characteristic length
in Nre and Nny is taken as ma which is one-half
of the circumference of a great circle of the eddy.
Admittedly, such a selection as well as the model
used for heat transfer and drag calculation is
somewhat arbitrary. It is hoped that the major
inaccuracies so introduced could be adequately
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compensated by including one empirical constant
in the analysis which will be described shortly.

With the foregoing characteristic length, the
Reynolds and average Nusselt number of the
eddy are:

Uy + U Uy + u\ ma
NRe'=(22 1_ 12 1)___
Uy — Uy ma

7y (12)

h,(ma
Y (;:)

v

(13)

It follows that the average Stanton number of
the eddy is:

(14)

Equation (11) is known to be valid for rela-
tively high Npr fluids as indicated. Since, in this
paper, one is primarily concerned with heat
transfer in liquid metals, it is necessary to deduce
a similar expression for fluids of much smaller
Npr. Using the well-known approximate pro-
cedure of solving the integral momentum and
energy equation of the boundary layer, one
obtains:

A 106
Nsy Ngi* = 164 5 = NiE (15t

Of particular interest is the fact that Npr which
occurs in equation (11) is raised to the power %
while in equation (15) it is raised to the power }.
Inasmuch as it has not been possible to use a
single expression for the Stanton number, two
separate expressions for the eddy diffusivity
ratio will be given.

2.1. Eddy diffusivity ratio for fluids of Prandtl
number ranging from 0-6 to 15
If one introduces the Peclet number of the
eddy Nper (=Ngrer Npr) into equation (8b),
there results:

_ T \1l/2 Nyw\ (1 ug — uj\ 12
=) (1 5) @27 0o

As pointed out earlier, due to the arbitrariness of
the selected shape of the eddy, model for the

t A detailed derivation is given in [33)].
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heat transfer process, etc., it was decided to
replace the constant 0-664 in the Pohlhausen
equation by an empirical constant b, the value
of which is to be determined later. Accordingly,
one writes equation (11) in the modified form:

b
Vg ‘”’
Introducing this relation into equations (10) and

(16) and inserting the results into equation (3),
yield:

Nsy N33 =

€H 1
€M -
1 + §b(l/a) [(ug — w)/v') NR2
I + $1/[0-318Nper + (1/B)(NYE N33}
{(Ufayl(uy — /0] + 0-203bNES NEE,
F(X)/ (1 + 0-318bNL3 Ni2 )%

in which F(X) is given by equation (8a) and

_(m\¥2( b 1 I uy — u)\V2
*=(3) (gt ) =5) 09

2.2. Eddy diffusivity ratio for liquid metals

Following the same argument expounded in
the preceding section, one modifies equation (15)
as

(18)

b
Nsy NJ2 = 1-64 NG
The corresponding expressions for equation
(18) and (19) are, for this case,

€H
€M -
1 + §b(l/a) [(u — w)/v') NG
1 + #{1/[0-318 Npe- + (0-609/b) N32]}
{U/a) [(up — u;)/v'] + 0-333bN2F(X)/
(1 + 0-522bN32)%}

(20)

@n

and

_(m\vE 1\ uy — u)\%2
x=(3) (e + gg)a =) @
Equations (18) and (21) contain common
unknowns, namely, the ratio of fluctuating
velocities (u, — u;)/v’, the ratio of mixing-length
to radius of the eddy //a, the Reynolds number
of the eddy Nge’ and empirical constant b.
The following two sections are devoted to their
discussion and evaluation.
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2.3. Ratio of fluctuating velocities

Referring to Fig. 2(a), u, — u; and v’ are,
respectively, the fluctvating velocities in the
axial and radial direction. Both are complicated
functions of space and time; their exact nature is
not known. Customarily, they are treated on a
statistical basis and expressed in terms of their
root-mean square values. These two quantities
are so interpreted in this paper.

Numerous experiments have been conducted
by various investigators, notably Laufer [27],
Reichardt [28], and Wattendorf [29], to study
the structure of turbulence in two-dimensional
channels. Laufer [30] also carried out one of the
most detailed investigations on turbulence in
fully developed pipe flow. When the ratio of
either fluctuating velocity to the friction velocity
v*[= 1/(g.7w/p)] were plotted against the dimen-
sionless radial location y/r,, it was found that,
up to a region very close to the wall, both were
almost independent of the Reynolds number.
Laufer’s measurements also indicate that
(up — up)/v* and v'/v* vary almost linearly with
radial location, showing an increase towards
the wall till a maximum is reached in the buffer
zone, followed by a rapid drop as the wall is
approached. Laufer’s results may be closely
approximated by the following expressions:

'
uz’_ul

195 (1 — 064 —Ji)
v e

23)

’

and =108 (1 — 036 ;y~) (24)

80 )

40 I | \ ;

\Y
i

00
o |
0-80 : IR — n

o 020 040 060 060 MO

FiG. 3. Variation of fluctuating velocity ratio with
radial loeation across pipe.
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It follows that,

1 —064y/r,
1—036y/r,
which is shown graphically in Fig. 3. Laufer’s

data were obtained for air, it will be assumed
that they remain valid for other fluids.

o Sc S 3
v

25

2.4. Reynolds number of the eddy Nwe' and the
ratio lla
Eliminating (4, — u,) from equations (23) and
(12) gives,

v =7 1.950*(1— 0642
Npe' = 3 l,[1 95v (1 064rw)] (26a)
which can be shown to equal

al y f
NRO = 1'537"‘—'; (1 - 064;;) NmJ(§>(26b)
For Nge > 105 Nikuradse [31] reported the
following expression for the ratio of mixing
length to pipe radius,

2 4
Lo 0-14—0-08(1 ~ l) —0-06(1 —1) @7
rw r w rw
which will be extrapolated for use at lower Nge
since no other information is available.

Next, we shall consider the ratio //a. In the
preliminary examination of the behaviour of
equation (18), the diffusivity ratio was calculated
for air of Npr=0-718 with the empirical
constant b retained as that originally appeared
in the Pohlhausen equation, namely, 0-664.
Computations were carried out for y/r,, == 0-5
and for three arbitrarily selected values of
lla = 2, 3 and 4. The results are summarized in
Tabie 1.

Table 1. Prediction of eu/em by equation (18) for air
of Ne:r = 0:718, b = 0664, y/r, = 05

€H
a = —
(9" 4
Nre |
I_, f=3’ f=4
a a a
14,500 | 1008 | 1018 1-030
80,300 | 1007 | 1016 1029
‘ i

It is seen that the calculated ratio eg/esr is not
sensitive to variations in //a. For simplicity we
select //a = 2 for subsequent calculations.

Using Nikuradse’s expression for //r, and
lla = 2, the Reynolds number of the eddy may
be related to the pipe Reynolds number and
Darcy friction factor as:

Nre!
N 79 = ,
— 008 (1 - rl)z— 0-06(1 - é)‘] (28)

w

= 0-766 (1 - 0-64;}1)[0-14 -

which is shown plotted in Fig. 4. It vanishes at
the wall, reaches a maximum at about y/r,, = 0-5
and then decreases toward the pipe center.
Nger may be regarded as a measure of the
turbulence intensity.

‘ N
0-08 + ———
LN
008 l/( L] N
t /] | 1
I
0-04 / AY
2
3 / :
z 003 ;
= ]
002 :
a
om[ :
L
o} 020 040 060 080 00
Y/
FIG. 4. Variation of -—NL with radial location
NRrov/(f18)
across pipe.

Diffusivity ratios for air as listed in Table 1
are only slightly higher than unity. Page er al.
{18] reported experimentally determined values
of o for air flowing between parallel plates.
Sleicher [19] also reported data for air in turbu-
lent pipe flow. While there are some discrepan-
cies between Page’s and Sleicher’s results, the
general behavior with respect to the influence of
Reynolds -number and location across the pipe
or channel seems to be in good agreement.
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However, Sleicher’s data have been chosen for
the determination of the empirical constant b in
ecjuation (18) because they were obtained for
pipe flow. After a few calculations, it was found
that by assigning b = 2-5, the predicted value for
air at Ngp. = 14,500 and y/r, = 0-35 could be
made to agree with Sleicher’s data. The reason
for the selection of this particular y/r,, was that
the experimental data indicated a nearly constant
trend beyond this location. It is pertinent that
the artificial matching of the theoretical equation
(18) and experimental data was done at only one
point and only for Npr = 0-718.

Using the expression for the ratio of fluctuating
velocities given by equation (25), //a = 2, and
b = 25, equations (18) and (21) finally become:

en _ 1+6774 Ngle

€M - _1 + 0'75 F1F2 (29)
in which _ 1 —0-64 y/’w 2
= T=036y/r, (292)
and,
(i) For fluids of Npr ranging from 0-6 to 15
F= 1
17 0-318Npe’ + 04NIE N
F, = 3-61¢ +
0-508N32 NyL'® X (299)
(T 0795 Ny LX)
X = 23841 (N34 + 0-795N32/8)
(ii) For liquid metals
F. = 1
™ 0-318Npe’ + 0-244N32
-833N32
Fo= 3614 + 0 oooNpe gy (2%

(1 + 1-305N13)y
X = 2:384'/2 (1-305 + Ngl/®)
In either case, Npe = Nge’ Ner, Nre is given by
equation (28) and F(X) by equation (8a).

For approximate calculations, the following
may be used:

(i) For fluids of Np; ranging from 06 to 15

e 1+ 135N-§8 exp [—(y/rn)"*]

ex 1 SINGIRN;S® exp [—(y/re)* ]

(30a)

(ii) For liquid metals
er _ 1 + 135N53" exp [—(y/r,)**]
e 1+ 380Np2® exp [—(y/r.)" %]

both give a maximum deviation of less than
14 per cent.

(30b)

3. COMPUTED RESULTS ON DIFFUSIVITY
RATIO, o
Equations (29), (29a) and (29b) have been used
to evaluate a for fluids of Npr = 0-718, 1 and 10
at several Ngro. Results obtained for Npr = 0-718
are plotted in Fig. 5. For purpose of comparison,
Sleicher’s experimental results are also shown.
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Fic. 5. Comparison of Sleicher’s experimental data
with calculated values of diffusivity ratio.
Npr = 0718

1,A Npe= 145 x 104

B Npe= 434 x 10*
3,C Nge= 803 x 10*

D Nge= 396 x 10*
2  Npe= 385 x 104
— — — Sleicher’s data.

It may be recalled that the empirical constant b
in equations (18) and (21) was determined by
matching the calculated value of a with Sleicher’s
data at only a single point. It is interesting to
note that the predicted variation of o« with Nge
and radial location does show fair agreement
with experiments. While Sleicher reported
values of a for y/r,, only up to 0-55, Page’s data
included regions close to the channel center.
The latter indicate a continuous, slight decrease
of a towards the channel center—a trend also
revealed by the present analysis. Fig. 6 illustrates
the calculated results for Npr = 1 and 10. The
former differs from Jenkins’ prediction [22)
which gives « = 1 when Npr == 1 irrespective of
Nge. No experimental data for higher Prandtl

number fluids are available for comparison.
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FiG. 6. Calculated variation of diffusivity ratio with

radial location for two Prandtl numbers and two
Reynolds numbers.

Npr = 10 e — — Npr= 10,

One interesting consequence of the present
analysis is that a, for any Npr, approaches unity
as Nge increases indefinitely. When this occurs,
both the numerator and denominator of equation
(29) become unity. It implies that at very high
Nge, the original Prandtl’s mixing-length hypo-
thesis becomes valid. At this point, a question
which naturally arises is: Why does the previous
analysis, such as that of von Kdarman (7],
Martinelli [9], or Lyon {10] in which a is assumed
to be unity for all Nre and Npr, give good
prediction of heat transfer for fluids of Npr
equal to or higher than that of air? The answer
lies in the fact that, in such fluids, the thermal
resistance is essentially confined to the laminar
sub-layer and buffer region. For instance, at
Ngre = 10,000, Martinelli [9] reported that
over 99 per cent of the temperature difference
occurred in the combined laminar sub-layer
and buffer zone for a fluid of Npr = 100. The
corresponding values for Npr = 1 and 0-01 are
71 per cent and 21 per cent, respectively. Hence,
for ordinary fluids, any inaccuracy which one
introduces in computing the thermal resistance
of the turbulent core would have only minor
effect on the prediction of Nusselt number. This
is not the case for liquid metals.

N. Z. AZER and B. T. CHAO

It is also seen that Sleicher’s data for air
which showed a > 1 at a region close to wall are
not contradictory to the fact that von Kirman’s
analysis and others (o = 1) give reasonably good
agreement with experiment in so far as the
prediction of heat transfer is concerned. In the
laminar sub-layer, turbulence is, by and large,
suppressed, and molecular conduction pre-
dominates.

The available experimental data of a for liquid
metals are those of Isakoff and Drew [15] and
Brown et al. [20]. Again, for the purpose of

1-00

080 ‘,*‘:r——&,’-r«,,, +6:6x10°

020

065 080
¥/
F1G. 7. Comparison of experimental data of diffusi-
vity ratio for mercury due to Brown, Amstead and
Short with calculated values.
Npr = 002
Theoretical prediction — — — Brown et al.

+00

comparison, numerical calculations of equations
(29), (29a) and (29c) were carried out for
Npr = 0-0239 and 0-02 at several Nge. The two
Npr selected correspond to those of mercury as
reported respectively in [15] and [20]. Results of
computation are shown in Figs. 7 and 8. The
theoretical prediction of equations (29), (29a)
and (29c) is seen to be in fair agreement with the
experimental measurements of Brown. It is to be
emphasized that the comparison made here
involves no further matching of the empirical
constant which has been previously determined
from results on air. At the lower Nge, the agree-
ment is considered good. At the higher Nge, the
theory predicts lower values. According to the
present analysis one sees that, for liquid metals,
increasing Nre tends to increase a, a trend which
is an antithesis to that for air or higher Npr
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FiG. 8. Comparison of experimental data of diffusi-
-vity ratio for mercury due to Isakoff and Drew with
calculated values.
Npr = 00239

— — — Isakoff and Drew Present analysis.

fluids. Fig. 7 shows that there is a slight drop in
the values of o« as the center of the pipe is
approached—a phenomenon which may also be
noticed in Brown’s data. Isakoff and Drew’s
results do not agree with those of Brown ef al.,
and hence are not in agreement with those pre-

+00

y /’~

Fi1G. 9. Predicted variations of diffusivity ratio with
radial location as influenced by Prandt]l numbers and
Reynolds numbers

Np; = 0001 1, A, X Nre = 4-34 x 10¢
— — — Npr = 001 2,B, Y Npe= 396 x 10*
——-—Npr =01 3,C,Z Nre= 324 x 108

1

dicted by the present theory. Drew and Isakoff
based their calculation on temperature data
which showed considerable scatter. As will be
pointed out in a later section, some of their
reported temperature profiles fell below the
limiting profile of Npr = 0. This led the writers
to believe that Isakoff and Drew’s results are
most probably in error.

Equations (29), (29a) and (29c) have also been
used to calculate for Npr = 0-001, 0-01 and 0-1
and for Nge = 434 x 104, 3-96 x 10® and
324 x 10%. Fig. 9 summarizes the results
obtained. For a given Npy, a increases with
increase in Nge. In the limit, as Nre - 00, a = 1
for any Npr. As the distance from wall increases,
e also increases, first rapidly and then slowly
till it assumes a more or less constant value.
For the highest Prandtl number investigated,
namely O-1, there is less variation of a with
respect to radial location across the pipe,
particularly when the Reynolds number is
large.

4. NUSSELT NUMBER AND TEMPERATURE
PROFILE FOR FULLY DEVELOPED PIPE FLOW
WITH CONSTANT WALL FLUX

The case to be considered concerns the
turbulent flow of liquid metals in smooth,
circular pipes with constant wall fiux. The fluid
properties are regarded as constants. This
problem was first considered by Martinelli [9]
who recognized the importance of molecular
conduction in the turbulent core for the transfer
of heat in fluids of very low Prandtl number,
such as molten metals. Martinelli’s analysis
was later modified by Lyon [10] who showed that
the Nusselt number could be expressed as:

1 (f* Uzdzy
NNu.b =2 £Z[1+G(‘M/")Nh]dz

(3D

In the above expression, the Nusselt number is
based on temperature difference between the wall
and the bulk of the fluid. Lyon integrated
equation (31) numerically, using point values of
velocity and e¢a/v as evaluated directly from
Nikuradse’s data [31]. Like Martinelli, Lyon
assumed that « =1 in his calculations. He
approximated his results of calculation for
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Nusselt number by the following interpolation
formula:
Nyy,p =7 + 0-025N§® 32

which has been recommended for use in the
Liquid Metals Handbook [32]. The results of
experiments are on the average, about 50 per
cent lower than the prediction of equation (32).
It is clear from equation (31) that, for a given
Npr, the Nusselt number depends on a, e/v and
the velocity profile whose effect is reflected in
the integral [ UZdZ. The latter two quantities
will be discussed separately in the following
sections.

4.1. The integral (; UZdZ

For an incompressible fluid. of constant
properties flowing turbulently in a pipe with
fully developed velocity and temperature profiles,
Seban and Shimazaki [2] showed that, for
constant wall flux, the axial temperature gradient
is independent of the radial position in the pipe.
Under such circumstance, it can be readily
shown that the radial g-distribution is given by:

1
. j ut(l — y/ry)d(y/ry)
9 _ 2'{ UZdZ =25
9w ° J ut(l — y/ry)d(y/ry)
’ (33)

If the logarithmic velocity profile proposed by
von Kédrman [7] were adopted, namely,

ut = yt, 0<yt<s
ut=-—-3054+5lny*, 5<y+<30 34
ut =55+ 25nyt, yt =130

the integrals in equation (33) could be readily
evaluated and the result expressed in a closed
form. It is,

q
9w
2:75(1 — p[ro)® + 1:251n Nre/24/(f/8)
— 1-25y/r (2 — y/ry)In [y/r., NRre/2
V(f18)]— 0-625(1 — y/r,) (3 — y/r,)
1-251n Nre/2+/(f8) — 127-8
(NRev/(f/8)~! + 22,960[Nre
vV (f18)]7% + 0-875

Equation (35) ignores the influence of laminar

(35)
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sub-layer and buffer region. If the latter is con-
sidered additional terms will appear in the
numerator of the above equation. A detailed
derivation has been given {33]. For the present
analysis, equation (35) may be used for the entire
cross-section without sacrificing accuracy. Fig.
10 is a graphical representation of such distribu-
tion for Nge ranging from 4 x 103to 3-24 x 108,

0
080 TTNgerdri0? T
N 326008
2 o8 N Ny 328100
\0 i
0-40
a/g,°Z
020} q/a.=2% - e
! : . . - - |
[o] 020 040 060 080 00

¥/7y

FiG. 10. Radiat g-distribution in fully developed
turbulent pipe flow.

g-distribution according to equation (35)

— — —— Martinelli’s distribution

- - - - Simple distribution used in the present analysis.

These correspond to the extremes of Nge used
by Lyon. Calculated data for all intermediate
NRe lie within the narrow loop bounded by the
two solid curves. It is thus seen that for the
realm of Nge considered, the ratio ¢/q, may be
closely approximated by a single curve express-
ible by:

2 1.75
g =2J. UZdZ ~ (1 — r!‘) =Z'" (35a)
w 0 w

Lyon’s individually computed values agree well
with this simple result. This is demonstrated in
Table 2.

That the g-distribution in turbulent pipe flowis
insensitive to Reynolds number variation has
also been confirmed experimentally by Isakoff
[34].

With the foregoing simplification, equation
{(31) could be written as:

AR

1 1
Nvuwo J‘,LH‘(GL EM/V)NPrdZ

(36)
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Table 2. Comparison of the numerical values of the integral :Z UdZ as reported by

Lyon and the suggested relation given by equation (35a)

y 7 L ZUdZ due to Lyon 217
Fo P2
| Nye=4:34 x 104 | Nge =396 x 10% | Nge= 324 x 10°

0 1| 0-5022 0-4990 0-5004 0-5000
01 09 | 0-4287 0-4230 0-4216 0-4158
0-2 0-8 | 0-3490 0-3430 0-3405 0-3384
0-3 07 0-2735 0-2680 0-2651 0-2679
0-4 06 0-2047 0-2000 0-1974 0-2045
05 05 0-1444 0-1410 0-1386 0-1487
06 0-4 0-0936 0-0909 0-0895 0-1006
07 0-3 0-0532 0-0515 0-0508 0-0608
08 0-2 0-0238 0-0230 0-0228 0-0299
09 01 0-0060 0-0058 0-0057 0-0089
10 o ! 0 0 0 0

!

It is interesting to note that the corresponding
expression used by Martinelli has the exponent
of Z replaced by 3, since the rather crude
assumption u = u,, was adopted in his analysis.

4.2. The ratio of eddy viscosity to kinematic
viscosity, epm/v

A rational calculation of the ratio eas/v is not
possible at the present time since no precise
theory of turbulence exists. Consequently,
one turns to experimentally measured velocity
profile for the evaluation of €. After examining
the several turbulent velocity profiles proposed
by various investigators, namely, Prandtl [35]
von Kdirmédn [36], Deissler [37] Reichardt
(38] Rannie [39] Ross [40] and Pai [41], the
writers came to the following conclusion. The
semi-empirical velocity profiles proposed by
various investigators may seemingly fit well the
experimental data, it does not necessarily follow
that the assumed model of turbulence is precise.
ey calculated from the directly measured velo-
city gradient across the pipe may not be in good
agreement with that computed from the semi-
empirical equation which is supposedly to
represent the velocity distribution. A detailed
analysis and discussion is given in [33]. For
fluids of relatively high Npr, any error introduced
in the evaluation of e»s will produce only minor
effect on the final result of Nusselt number
calculations. This is no longer true for liquid

metals. In view of these observations, it was
decided to use Nikuradse’s data of ep/v [31]
which were evaluated directly from the measured
velocity gradient. However, no data were report-
ed by Nikuradse for y/r,, < 0-02. Extrapolation
was then made with the aid of Karmén profile as
given by equation (34). For those cases of Nge
for which no information was reported by
Nikuradse, Deissler’s velocity profile [37] has
been used for the determination of exs.

4.3. Result of Nusselt number calculations

With a and ep/v known, the Nusselt number
may be evaluated from equation (36), using
numerical integration. For the purpose of com-
parison, the Prandtl and Reynolds number
selected were those used by Lyon, i.e. Npr = 0,
0-001, 0-01, and 0-1 and Nge = 4-3¢ x 104,
396 x 10° and 3-24 x 10%. For the limiting case
of Npr = 0, equation (36) may be readily inte-
grated to give Nwy, , = 7. This limiting Nusselt
number is independent of the Reynolds number,
at least for the range considered in the present
work. As Nge — o0, the flux distribution becomes
linear which has been assumed by Martinelli.
Consequently, the exponent of Z in equation
(36) should be replaced by 3, which gives a
limiting value of 8 as Npr— 0.

Calculated values of Nusselt number for the
four Npr and three Nge selected are listed in
Table 3. Tabulated also are the results reported
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Table 3. Calculated values of Nusselt number

NNu,b
Nge Ner | Nee
| Lyon'’s theoretical [ Present theory
result | equation (36)
0 0 683 ' 7
4:34 x 10* 0-001 | 434 7-30 ! 7-04
0-01 434 10-30 ! 8-01
0-1 4340 30-5 | 26-07
0 0 | 7-05 ‘: 7
0001 | 396 | 9-54 5 7-46
396 x 10% 0-01 3960 | 26-5 169
0-1 39,600 } 132-0 108
0 0 ‘ 717 ; 7
0-001 | 3240 208 | 12:5
324 x 10% 0-01 32,400 | 100 ; 65-2

by Lyon. A significant difference is seen to exist.
For design computations, Lyon approximated
his calculated results by equation (32) with a
maximum deviation of 12 per cent. Lyon’s
expression implies that viscosity has no effect on
turbulent heat transfer in liquid metals. This,
however, can not be confirmed by the present
results. Fig. 11 illustrates the independent effect
of Prandtl and Reynolds number on the Nusselt
number. For Npr < 01, and Npe < 15,000, the
theoretical results of the present analysis could

be represented by an interpolation formula
of the form:

Ny, » = 7 + 0-05 N377 N33 37
which gives a maximum deviation of less than
12 per cent.

To ascertain the accuracy of equation (37),
some of Lubarsky and Kaufman’s re-evaluated
experimental data on mercury and lead-bismuth
eutectic [1] were reproduced in Figs. 12(a, b, ¢)
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Nex FiG. 12(a). Comparison of experimental Nusselt

Fic. 11. Comparison of Lyon’s equation and the
predicted Nusselt numbers according to the present
analysi

— — — Lyon’s equation INfNu,, = 7 4+ 0-025Nps"".

number for mercury due to Johnaon, Clabaugh and
Hartnett [1] with the present analysis.
Npr = 0022
— — —Lyon
———— Present analysis, equation (37).
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FiG. 12(b). Comparison of experimental Nusselt
number for mercury due to Trefthen [1] with the
present analysis.
Npe = 002
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Fic. 12(c). Comparison of experimental Nusseit
number for mercury due to Stromquist (1] with the
present analysis.

Npr = 002

— — — Lyon .
~w— Present analysis, equation (37).

and Figs. 13(a, b). Comparison is made to
those predicted by equation (37) as well as to
those of Lyon. The improvement over Lyon’s
expression is obvious. However, according to
the proposed theory, the lowest possible Nusselt
number is 7 but the bulk of experimental data at
low Peclet numbers indicate a value considerably
less than 7. It is not clear at the present time
whether this indicates a deficit in the theory or is
due to errors in experimental data. In a dis-
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cussion of {24], Lyon pointed out that since most
of the data in this range of Npe were obtained in a
‘horizontal tube with dense fiuids (mercury and
lead-bismuth), the stratifying effect of thermal

expansion might have been the cause.

Having carefully examined published data on

liquid metal heat transfer, Lubarsky and Kauf-
man [1] proposed an empirical equation of the

form:
Nrxy, = 0:625 N3} (38)
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Fic. 13(a). Comparison of experimental Nusselt
number for lead-bismuth eutectic due to Seban [1]

with the present analysis.
Npr = 002
— — —Lyon
Present analysis, equation (37).
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Fic. 13(b). Comparison of experimental Nusselt
number for lead-bismuth cutectic due to Johnson,
Hartnett and Clabaugh [1] with the present analysis.
Ner = 0023
— — — Lyon
Present analysis, equation (37).
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which has been claimed to best fit most of the
fully developed turbulent heat transfer data on
liquid metals. It is shown plotted in Fig. 14
along with the theoretical relation depicted by
equation (37). Like Lyon’s expression, equation
(38) does not involve viscosity. At the present
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FiG. 14. Comparison of Lyon’s theoretical prediction,
the empirical relation due to Lubarsky and Kaufman
with the present analysis.

— — — Lyon Nxup = 7+0025Npe" 8
—————— Present analysis Nyu,, = 74+0-05Npe™ 7 Np, 0%
————— Lubarsky and

Kaufman Nyu,, = 0-625Npe4.

time, experimental data are not available to con-
firm or to contradict the independent effect of
Npr as indicated by equation (37).

4.4. Temperature profile

If the dimensionless variable Z is introduced
into equation (2), followed by using the g-distri-
bution given by equation (35a), one obtains,
upon integration,

r 1 20-75
b — 1= wj

T A, k), 1+a(em/v) Ner az

(39

Hence, the normalized temperature profile is

ty — 1 J3{Z>"dZ/[1 + a(ers/v) Neel}

ty — t, JH{Z"™dZ/[l + alen/v) Npx]}

For the limiting case of vanishingly small Prandtl

number, but finite Nre, equation (40) reduces to a
simple form:

t, — t

L, — I,

(40)

=1 — Z17

(41
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which is independent of the Reynolds number,
at least for the range considered ir this paper.
An interesting corollary is: For a fluid cf very
low Nepr, say 0-001 or less, one might expect that
the influence of Nre on both temperature profile
and Nny,, would be small.

On the other hand as Npe > 0, the velocity
profile becomes flat, and the heat flux (g/4)
distribution becomes linear. The temperature
distribution is then given by:

t, — ! _ P, {ZdZ/[1 +a(epm/v) Npr}}

ty —te  [3{ZdZ][14a(err/v) Np:]}

which has been indiscriminately used by

Martinelli [9] for all Nge. If, furthermore, the

condition Npr— 0 is introduced into equation
(42), there results,

t, — t

ty — L,

(42)

=1-2z

43)

which is a parabolic distribution.

Several temperature profiles have been calcu-
lated by numerical integration for the following
cases for which experimental data are available
for comparison: (i) Mercury of Ner = 0-0239;
Npe = 1'19 x 10%and 3-73 X 10°. Data reported
by Isakoff and Drew [15]. (ii) Mercury of
Npr = 002; Npe =25 x 10° and 66 x 105,
Data reported by Brown et al. [20]. Results of
computation are shown plotted in Figs. 15(a, b)

e e
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FiGg. 15(a). Comparison of measured temperature
distribution in mercury by Isakoff and Drew [15]
with calculated profiles.

O Isakoff and Drew Nre = 1-19 x 10%

+ Isakoff and Drew Nre = 473 x 10%

— —- — Martinelli
Present analysis.
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and Figs. 16(a, b). Included are Martinelli’s
theoretical predictions. In general, Martinelli’s
profile exhibits a steeper temperature change at
the wall vicinity than that predicted by the
present theory. This is to be expected since
Martinelli’s analysis predicts Nusselt numbers
which are too high. From the plotted results, it is
seen that the temperature profile as calculated
from equation (40) has somewhat better agree-
ment with measured data than Martinell’s
prediction. The difference, however, is not great.
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Fig. 15(b). Comparison of measured temperature
distribution in mercury by Isakoff and Drew [15]
with the calculated profile.

O Isakoff and Drew Npr = 0-0239, Nge = 3-73 x 10°

— — — Martinelli
————— Present analysis.
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F1G. 16(a) Comparison of measured temperature
distribution in mercury by Brown, Amstead and
Short [20] with the calculated profile.
O Brownetal. Npr= 002, Ngre=25x 10*
— — — Martinelli
Present analysis.
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FiG. 16(b). Comparison of measured temperature
distribution in mercury by Brown, Amstead and
Short [20] with the calculated profile.
O Brown et al. Npr= 002, Nge= 66 x 10°
— — — Martinelli
Present analysis.

In a discussion of a recent paper [24], Sleicher
pointed out that normalization of temperature
profiles often made it inadequate for comparison.

It should be mentioned that the experimental
data of Isakoff and Drew exhibit, in many cases,
considerable scatter., Many of their data for
Nre = 473 x 10¢ fell below the limiting
profile of Npr = 0 as shown in Fig. 15(a), which
is most unlikely. As pointed out earlier, this
consideration made the writers doubt seriously
the accuracy of the a-values reported by Isakoff
and Drew. In general, Brown’s data had less
scatter and showed much better agreement with
the theoretical results.

Computed results on Nusselt number and
temperature profile in fully developed pipe flow
with constant wall temperature will be given in
a subsequent paper.
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